
 The 't Hooft model as a hologram

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP01(2009)013

(http://iopscience.iop.org/1126-6708/2009/01/013)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 11:36

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/01
http://iopscience.iop.org/1126-6708/2009/01/013/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
1
(
2
0
0
9
)
0
1
3

Published by IOP Publishing for SISSA

Received: July 21, 2008

Revised: December 16, 2008

Accepted: December 23, 2008

Published: January 7, 2009

The ’t Hooft model as a hologram

Emanuel Katz

Department of Physics, Boston University,

590 Commonwealth Avenue, Boston, MA 02215, U.S.A.

E-mail: amikatz@buphy.bu.edu

Takemichi Okui

Department of Physics & Astronomy, Johns Hopkins University,

3400 North Charles Street, Baltimore, MD 21218, U.S.A., and

Department of Physics, University of Maryland,

College Park, MD 20742, U.S.A.

E-mail: okui@pha.jhu.edu
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1. Introduction

Our limited understanding of gauge theory dynamics in the non-perturbative regime ham-

pers both our description of QCD phenomena, as well as our ability to construct viable

scenarios with strong dynamics for physics beyond the Standard Model. Lattice theory

has been helpful in addressing some of the issues, however it does face certain challenges.

Some of these difficulties include treatment of time evolution in a system with temperature

or chemical potential, simulation of supersymmetric theories, and dealing with chiral sym-

metry in an efficient manner. Thus, it is desirable to find novel theoretical tools to tackle

non-perturbative physics. The AdS/CFT framework [1] offers a different approach for per-

forming calculations in field theory in the non-perturbative regime. The local operators of

the original field theory are mapped to fields propagating in a curved higher-dimensional

background. A general field theory contains a multitude of local operators, and therefore

its higher-dimensional dual is expected to contain infinitely many fields. The interactions

of these higher-dimensional fields, which can be of large spin, are expected to be quite

complicated, and in general are difficult to determine. Considerable simplification occurs

when the field theory admits a limit for which most of the operators acquire large anoma-

lous dimensions. The anomalous dimensions are mapped via AdS/CFT to masses of the

dual higher-dimensional fields, and thus such a limit effectively decouples most fields. The

remaining fields are usually those dual to operators whose dimensions are protected by var-

ious symmetries. These are typically duals of currents (and possibly their superpartners),

and their interactions are heavily constrained by symmetry. Thus, most known duals are of

theories where there is a significant hierarchy between the dimensions of operators. Unfor-

tunately, this is not the case for QCD, which is partly why it has thus far been difficult to

construct its dual, though duals to other field theories with ‘QCD-like’ dynamics have been

found. In a few cases it has been possible to find soluble higher-dimensional string duals

to certain field theories (or sub-sectors thereof) [2]. Such descriptions capture effectively

the physics of many higher-dimensional fields (the resonances of the string), going beyond

the limited set constrained by symmetry. One may hope that a theory like QCD admits

such a string description, however thus far, none has been found.

Hence, instead of attempting to find a dual to the full QCD theory, it might be fruitful

to consider only a limited set of operators, and find a description for their holographic

dual fields. Such an approach faces certain obvious challenges. The first is that one would

expect that any operator has non-trivial correlation functions with many other operators

(as allowed by symmetry and Lorentz invariance), and thus its dual field will necessarily

interact with many other fields. As mentioned, these interactions are difficult to determine

and usually are not even renormalizable. However, in the limit of large number of colors,

Nc, all interactions are suppressed, and one is left with a quadratic action of free fields

propagating on some background. One may worry that such an action includes higher-

derivative terms. After all, there is no parameter in QCD, such as the ’t Hooft coupling,

that would suppress them. However, leading 1/Nc calculations correspond to ‘on-shell’

calculations in the higher-dimensional theory, and thus only care about the dispersion rela-

tion governing the propagation of the dual field in the curved background. If we know the

background exactly and include all (typically an infinite number of) fields, then in princi-
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ple we can find a basis of fields where dispersion relations become quadratic in derivatives,

hence the action is local in this sense. Thus, if we limit ourselves to asking questions

that concern only the quadratic part of the action (i.e. focus on masses, decay constants,

and two-point functions), this approach may be useful. Finally, there is the question of

the curved background itself. In the UV QCD is asymptotically free, and therefore the

background should approach AdS. Thus, a natural place to start is the conformal limit

of QCD, for which we know much more about the quadratic action. Indeed, 4d Poincaré

invariance tells us that the dispersion relation is quadratic in 4d momenta, so derivatives

with respect to 4d coordinates enter quadratically in the action. The AdS isometry then

guarantees that derivative along the 5th coordinate also enters quadratically. This plus the

usual consideration of internal symmetries, etc. completely fixes the form of the quadratic

action (at least for propagating fields). In addition, we need only consider the duals of

primary operators as their descendents are automatically included by the AdS isometry.

As primary operators do not mix, this is a basis of for bulk fields for which the quadratic

action becomes diagonal.

The simplicity will be lost once we take into account the effects of conformal symme-

try breaking, such as the running QCD coupling, confinement, chiral symmetry breaking,

etc. Such effects can be parameterized in terms of various backgrounds in the higher-

dimensional space. Denoting the 5th coordinate by z, these background in general depend

on z. Then, it is no longer true that the quadratic 4d dispersion implies that ∂z appears

quadratically in the action. For example, suppose we are interested in the quadratic ac-

tion for a scalar field φ and there is a background of another scalar field Φ parameterizing

some conformal symmetry breaking effects. In the full action, there might be a term

like gM1N1gM2N2gM3N3gM4N4(∂M1
Φ)(∂M2

Φ)(∂M3
Φ)(∂M4

Φ)(∂N1
∂N2

φ)(∂N3
∂N4

φ). Once a z-

dependent Φ background is turned on, this yields a quadratic term for φ with four ∂z’s.

Therefore, away from the exact AdS, we do not know how many z derivatives are in the

action. Also, a term like Φ2φ2 will give us a z-dependent mass term for φ. In addition,

conformal symmetry breaking will generally induce mixing between fields corresponding to

operators with different scaling dimensions. But as mentioned above, these higher deriva-

tive terms are merely a consequence of integrating out heavier fields which mix with Φ.

Once we ‘integrate in’ all fields and include all the mixings among them, there should be

a basis for the fields for which the quadratic action is local.

The above complexity means that it may be difficult to derive the dual of QCD but

we might at least learn something about the full theory. Restricting to a regime where

QCD is almost conformal (i.e. looking at the correlators at large Euclidean momenta), we

can match the (small) conformal breaking effects order-by-order in ΛQCD. This tells us

how the backgrounds affect the quadratic Lagrangian at small z (the UV of theory). This

knowledge may be sufficient for certain questions. If for example, a particular bulk mode

profile is localized sufficiently far from the large z region, then the details of conformal

symmetry breaking might not be very important in determining its properties.

The above philosophy is the motivation for the ‘AdS/QCD’ phenomenological approach

which has been applied to fields of various spin [3 – 5]. A good agreement of masses and

decay constants with data is found. This is an indication that for low-lying KK-modes,

both the large Nc approximation works remarkably well, and the profile of KK-modes is

– 3 –
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surprisingly well described by assuming the background is close to AdS with a hard cutoff.

Still, it is clear that such a description is naive as it does not capture the spectrum of

the highly excited modes, which lie on Regge trajectories. A simple model which captures

the Regge spectrum was presented in [6], but its origin remains unclear. In particular,

as mentioned, once conformal symmetry is broken, all fields dual to operators of similar

quantum numbers are expected to mix in a complicated way. It is therefore a mystery why

this mixing is effectively captured by the simple diagonal action of [6].

In this paper we will attempt to test the AdS/QCD approach in a simpler setting

where there is some analytic control over the non-perturbative dynamics. In particular,

we will focus on two-dimensional QCD in the large Nc limit. The spectrum of this model

was solved by ’t Hooft [7], who derived a Schrödinger equation for the meson wavefunction

(as a function of the parton-x variable). While one could “build” a 3d AdS/QCD model

with a few fields propagating in some effective background chosen to reproduce the meson

spectrum, that is not the goal of this paper. As mentioned above, our view is that such 3d

model is an approximation of the (quadratic) action involving an infinite number of fields

mixed with each other, corresponding to the infinite number of operators mixed with each

other on the 2d side. Our goal is to understand such mixings and how they are mapped

between 2d and 3d, taking advantage of the exact two-point functions calculated in [8].

Toward this goal, we will first begin with the conformal limit of the theory where there

are no mixings, and explicitly construct quadratic 3d actions for spin-0, -1, and -2 fields

which reproduce the expected two-dimensional correlation functions. This will reveal some

qualitative features of the 3d actions which should be shared by fields with spin ≥ 3. We

will then analyze the leading conformal symmetry breaking effects, i.e. the leading mixing

effects, in particular, the chiral condensate. We will then return to the conformal limit

and construct a “transform” which can directly map the scale invariant limit of the ’t

Hooft equation (derived first in [9]) to the equation of motion for a scalar field in AdS3.

Our transform reveals an explicit relation between the parton-x variable and the radial

coordinate of AdS3, which we use to transform the meson parton wavefunction into the

KK-mode wavefunction of the dual scalar field.1 We also show how a calculation of a

two-point correlator using parton wavefunctions can be reformulated as an evaluation of

an appropriate three-dimensional action, thereby verifying the AdS/CFT prescription. In

other words, we find a direct map from the CFT to AdS.

The paper is organized as follows. In section 2, we will briefly review the ’t Hooft

model and summarizes the relevant results. Section 3 which discusses the 3d dual will

be divided in two parts. In the first part, section 3.2, we will match two theories in the

conformal limit. The second part, section 3.3, will discuss conformal symmetry breaking

to leading order in the coupling. We then present our transform that relates the ’t Hooft

wavefunctions to the KK modes (section 4), and show how one may derive a 3d action

from the 2d side. Finally, we make some comments in section 5 about the expected form

of the full dual to the ’t Hooft model and its relation to the model of [6]. We conclude in

section 6.

1An alternative proposal for the relation between parton-x and the radial coordinate was given in [10].
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2. The ’t Hooft model

This section contains a short review of the ’t Hooft model [7] and summary of some known

and new formulae relevant to our later discussions on the 3d dual. Section 2.1 reviews the

basic features of the model in the conventional language commonly used in the literature,

while section 2.2 and 2.3 are written in a manner best-suited for the use of AdS/CFT

correspondence. In section 2.4 we remark briefly on the fate of chiral symmetry in the ’t

Hooft model.

2.1 The basics

The ’t Hooft model is an SU(Nc) gauge theory in 1+1 dimensions with Nf Dirac fermions

(‘quarks’) in the fundamental representation of SU(Nc). Just for simplicity, we will take

Nf = 1 in this paper. Denoting the ‘quark’ and the ‘gluon’ field-strength by ψ and Gµν ,

the Lagrangian is given by

L’t Hooft = − Nc

4πΛ2
tr
[
GµνG

µν
]
+ iψ /Dψ −mqψψ , (2.1)

where mq is the quark mass, and the gluon field is normalized such that Dµψ = ∂µψ +

iAa
µT

aψ with tr[T aT b] = δab. Note that in 2d the mass dimension of the gauge coupling is

one, and in (2.1) we have chosen to write the coupling as Λ
√
π/Nc where Λ is a physical

mass scale analogous to ΛQCD of real-life QCD. We assume Nc ≫ 1 and will analyze the

theory in terms of 1/Nc expansion. We will frequently refer to the left-mover ψ+ ≡ P̂+ψ

and the right-mover ψ− ≡ P̂−ψ, where P̂± ≡ (1 ± γ3)/2 with γ3 ≡ γ0γ1.

In this paper, we will mainly consider the mq → 0 limit, in which the Lagrangian (2.1)

has the following global U(1)L ⊗ U(1)R flavor symmetry. Under U(1)L, ψ+ transforms as

ψ+ → eiαℓψ+ while ψ− is neutral. Under U(1)R, ψ+ is neutral while ψ− transforms as

ψ− → eiαrψ−. Equivalently, we will sometimes talk about the vector U(1)V and axial

U(1)A symmetries corresponding to αℓ +αr and αℓ −αr. Note that, unlike in the 4d QCD,

the SU(Nc) gauge interaction does not make U(1)A anomalous, thanks to the fact that all

SU(Nc) generators are traceless. Therefore, in the mq → 0 limit, the Noether currents Lµ

and Rµ for U(1)L and U(1)R are both exactly conserved even at quantum level. In other

words, ∂µ〈α|Lµ|β〉 = ∂µ〈α|Rµ|β〉 = 0 for any states |α〉 and |β〉.2
Note that, in 2d, the ‘gluon’ has no propagating degrees of freedom — it only produces

instantaneous “Coulomb” interactions. Due to this and the fact that the gauge boson

self-couplings vanish in light-cone gauge (A+ = 0 or A− = 0), all two-point correlation

functions between color-singlet quark-bilinear operators can be exactly calculated at the

leading order in 1/Nc expansion [8]. The results can be expressed solely in terms of the ’t

Hooft wavefunction φn(x) where x is restricted as 0 ≤ x ≤ 1 while n = 0, 1, 2, · · · labels the

mesons. The x variable is literally the x in the parton model, and |φn(x)|2 is precisely the

parton distribution function. The meson mass mn is an eigenvalue of the ’t Hooft equation

2However, they may have global anomalies, that is, products of currents (such as 〈0|T̂{Lµ(x)Lν(y)}|0〉)
may be only conserved up to a local term. This is not a problem since these U(1) symmetries are not gauged.

– 5 –
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(with φn(x) being the eigenfunction):

m2
q/Λ

2 − 1

x(1 − x)
φn(x) − P̂

∫ 1

0

φn(y)

(y − x)2
dy =

m2
n

Λ2
φn(x) , (2.2)

where P̂ denotes the principal-value prescription for the integral. From this equation, one

can deduce that φn(x) can be taken to be real, orthonormal, and complete:

∫ 1

0
dx φn(x)φm(x) = δnm ,

∞∑

n=0

φn(x)φn(y) = δ(x − y) . (2.3)

Also, the meson spectrum is non-degenerate, so φn(x) satisfies the following

reflection property:

φn(1 − x) = (−1)n φn(x) . (2.4)

As an example which illustrates how φn(x) appears in the correlators, let us consider

the scalar and pseudoscalar operators S ≡ ψψ and P ≡ iψγ3ψ. Then, at the leading order

in 1/Nc expansion, the Fourier transforms of the SS and PP correlators3 are given by

〈S S〉(q) =
iNc

4π

∑

n=1,3,···

m2
q

q2 −m2
n + iε

[∫ 1

0
dx

2x− 1

x(1 − x)
φn(x)

]2

, (2.5)

〈P P 〉(q) =
iNc

4π

∑

n=0,2,···

m2
q

q2 −m2
n + iε

[∫ 1

0
dx

1

x(1 − x)
φn(x)

]2

. (2.6)

(See appendix B for the derivation.) Notice that the correlators (2.5) and (2.6) have poles

corresponding to the meson masses, but have no cuts associated with intermediate states of

quarks-quarks are confined. Also, we see in (2.5) and (2.6) that the n = 0, 2, 4, · · · mesons

are pseudoscalars while the n = 1, 3, 5, · · · mesons are scalars.

Unfortunately, no closed-form expression is known for either φn(x) or mn. However,

for n≫ 1 and mq ≪ Λ, it is easy to check that they may be approximated as

φn(x) ≃
√

2 cos[nπx] , m2
n ≃ π2Λ2n . (2.7)

Note that the meson spectrum exhibits a Regge-like behavior. This approximate form of

φn(x) is only valid away from the x = 0, 1 endpoints. Near the endpoints, φn(x) sharply

rises from 0 as xmq/Λ, then quickly switching to the above cosine behavior.4

3We use the notation

〈O1 O2〉(q) ≡
Z
d2x eiq·x〈0|T̂{O1(x)O2(0)}|0〉 .

4The reader familiar with the ’t Hooft model may recognize that our approximate solution (2.7) is

different from the one commonly found in the literature where it is sin[(n + 1)πx] instead of cosine. The

reason for the difference is mq. We are interested in the mq ≪ Λ case (in fact the mq → 0 limit) where φn

shoots up almost vertically at the endpoints because the slope of xmq/Λ diverges for mq → 0. On the other

hand, the sine solution seen in the literature is appropriate for mq ≃ Λ.

– 6 –



J
H
E
P
0
1
(
2
0
0
9
)
0
1
3

Some exact results are known in the mq → 0 limit. For example, we will see in

section 2.3.2 that all the mesons except n = 0 satisfy
∫ 1

0
φn(x) dx = O(mq/Λ) −→ 0 . (2.8)

The lightest meson (i.e. n = 0), on the other hand, satisfies

φ0(x) −→ 1 ,
m2

0

mq
−→ 2π√

3
Λ . (2.9)

(See, for example, [11] for a derivation of the last formula.) Thus this pseudoscalar meson

becomes massless as mq → 0. Even though this is reminiscent of the relation m2
π ∝ mq in

real-life QCD, it is actually a bit subtle to interpret the n = 0 meson as a Nambu-Goldstone

boson from chiral symmetry breaking, because in 2d there is no spontaneous breaking of a

continuous internal symmetry [12]. We will briefly return to this issue in section 2.4.

2.2 Primary operators in the ’t Hooft model

When we construct the 3d dual of the ’t Hooft model in section 3, our starting point will

be the conformal limit of the model (Λ → 0 and mq → 0). In conformal field theory,

primary operators play an important role. Conformal invariance strongly constrains the

properties of primary operators, and once we know all the correlation functions among

primary operators, all other correlators can be derived from them by conformal symmetry.

So in this section we describe the primary operators in the ’t Hooft model.

Since we are working at the leading order in 1/Nc expansion, we only consider color-

singlet quark-bilinear operators. Furthermore, in the conformal limit, since mq is absent

and the gauge interaction can be ignored, many of those operators actually vanish by the

equations of motion ∂+ψ− = ∂−ψ+ = 0.5 We then classify non-vanishing ones according

to scaling dimensions and U(1)A charges.

Among U(1)A-charged primary operator, the only one combination which does not

vanish by the equations of motion is

X ≡ S + iP√
2

=
√

2ψ†
+ψ− . (2.10)

All other ones can be written as a non-primary operator plus a piece that vanishes by the

equations of motion. (See appendix A for the details.) X is neutral under U(1)V . The

scaling dimension of X is one.

On the other hand, there are two types of U(1)A-neutral primary operators which do

not vanish by the equations of motion:

Lk+ =
√

2

k−1∑

j=0

(k−1Cj)
2 [(−i∂+)k−1−jψ†

+] (i∂+)jψ+ ,

Rk− =
√

2

k−1∑

j=0

(k−1Cj)
2 [(−i∂−)k−1−jψ†

−] (i∂−)jψ− , (2.11)

5The light-cone coordinates x± are defined as x± = (x0±x1)/
√

2. The left-mover ψ+ and the right-mover

ψ− are defined by ψ± = P̂±ψ where P̂± ≡ (1 ± γ3)/2 with γ3 ≡ γ0γ1.

– 7 –
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where nCm ≡ n!/[m! (n−m)!], and the notation Lk+ is a shorthand for L++···+ with k +s.

(See appendix A for derivation.) Both the L-type and R-type are neutral under U(1)V .

The scaling dimensions of Lk+ and Rk− are both k.

Even though Lk+ (or Rk−) by itself is an irreducible representation of the 2d Lorentz

group, it is often convenient to regard Lk+ and Rk− as components of the rank-k tensor

operators L
(k)
µ1···µk

and R
(k)
µ1···µk

where L
(k)
µ1···µk

consists of ψ†
+, ψ+, and k−1 derivatives, while

R
(k)
µ1···µk

consists of ψ†
−, ψ− and k − 1 derivatives. So, by definition we have

L
(k)
++···+ ≡ Lk+ , R

(k)
−−···− ≡ Rk− , (2.12)

and

L
(k)
−−···− ≡ 0 , R

(k)
++···+ ≡ 0 . (2.13)

All the remaining components (with mixed +s and −s) are not identically zero like (2.13),

but will vanish by the conformal-limit equations of motion ∂+ψ− = ∂−ψ+ = 0:

L
(k)
+− mixed = 0 , R

(k)
+− mixed = 0 (by the e.o.m.) (2.14)

Thus the meanings of “0” in (2.13) and (2.14) are very different — while (2.13) is always

true by definition, (2.14) will not hold once we go away from the conformal limit by turning

on Λ or mq. Also, even in the conformal limit, (2.14) may be violated by a local term for

products of operators, since quantum mechanically equations of motion only hold up to a

local term for operator products.

Hereafter, we will often refer to L
(k)
µ1···µk

and R
(k)
µ1···µk

as ‘spin-k’ currents, even though

there is no angular momentum in 1+1 dimensions. The spin-1 and -2 currents are the

familiar ones; Lµ and Rµ are the Noether currents for U(1)L and U(1)R, while (Lµν+Rµν)/2

is the energy-momentum tensor Tµν . Similarly, we will sometimes refer to X as ‘spin-0’.

2.3 Two-point correlators in the ’t Hooft model

Here, we summarize two-point correlation functions among the primary operators in the ’t

Hooft model. We first present exact formulas at the leading order in the 1/Nc expansion (see

appendix B for derivation), then analyze their conformal limit and the O(Λ) corrections,

to prepare for the construction of the 3d dual.

The SS and PP correlators are already presented in (2.5) and (2.6). The LL- and

RR-type correlators for arbitrary mq and Λ also take a rather simple form:

〈Lk+ Lk′+〉(q) =
iNc

π

∑

n

qk+k′

+

q2 −m2
n + iε

Mk,nMk′,n ,

〈Rk−Rk′−〉(q) =
iNc

π

∑

n

qk+k′

−
q2 −m2

n + iε
Mk,nMk′,n , (2.15)

where the moments Mk,n are defined as

Mk,n ≡
∫ 1

0
dx Pk−1(2x− 1)φn(x) , (2.16)

– 8 –
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where Pn(x) is the Legendre polynomial. (Unfortunately, the correlators for the other

components of L
(k)
µ1···µk

and R
(k)
µ1···µk

with mixed + and − indices are difficult to compute

except in the conformal limit. The LR correlator is also difficult to calculate.) Note that,

from (2.4) and (2.16), we see that Lk+ and Rk− with even k create scalar mesons, while

with odd k they create pseudoscalar mesons. Then, at the leading order in 1/Nc, this has

a simple corollary:

〈S L(k)
µ1···µk

〉(q) = 〈S R(k)
µ1···µk

〉(q) = 0 for k = odd,

〈P L(k)
µ1···µk

〉(q) = 〈P R(k)
µ1···µk

〉(q) = 0 for k = even. (2.17)

On the other hand,

〈S Lk+〉(q) =
iNc

2π

∑

n

mq q
k
+

q2 −m2
n + iε

Mk,n

∫ 1

0
dx

2x− 1

x(1 − x)
φn(x) for k = even, (2.18)

and

〈P Lk+〉(q) =
Nc

2π

∑

n

mq q
k
+

q2 −m2
n + iε

Mk,n

∫ 1

0
dx

1

x(1 − x)
φn(x) for k = odd. (2.19)

The SR correlator can be obtained from (2.18) by replacing q+ with q−, while the PR

correlators can be obtained from (2.19) by replacing q+ with q− and put an overall −1.

For k = 1, the above formulas greatly simplify in the mq → 0 limit (but still with

arbitrary Λ). In this limit, (2.8) and (2.9) imply M1,n = δn,0, which allows us to evalu-

ate (2.15) exactly for k = ℓ = 1. Also, recall that both L− and R+ are identically zero.

Therefore, we obtain the following very simple expressions:

〈Lµ Lν〉(q) =
iNc

π

qL
µ q

L
ν

q2 + iε
,

〈RµRν〉(q) =
iNc

π

qR
µ q

R
ν

q2 + iε
(mq → 0, Λ arbitrary), (2.20)

where

qL
µ ≡ qµ + ǫµνq

ν

2
, qR

µ ≡ qµ − ǫµνq
ν

2
, (2.21)

with ǫ+− = −ǫ−+ = +1. (Hence, qL
+ = q+ and qL

− = 0, while qR
+ = 0 and qR

− = q−.)

How about the LR correlator? Because L− and R+ are identically zero, the only (poten-

tially) nonzero component of the LR correlator is 〈L+R−〉(q). Then, since 〈L+R−〉(q) is

a dimensionless Lorentz scalar, we can write the LR correlator as

〈LµRν〉(q) = − iNc

π

qL
µ q

R
ν

q2 + iε
f(Λ2/q2) , (2.22)

with some function f . Then, denoting the U(1)V current as Vµ = Lµ +Rµ, we have

〈Vµ Vν〉(q) =
iNc

π

ǫµαq
α ǫνβq

β

q2 + iε
+
iNc

π

qL
µ q

R
ν + qR

µ q
L
ν

q2 + iε

[
1 − f(Λ2/q2)

]
, (2.23)
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which implies

qµ〈Vµ Vν〉(q) =
iNc qν

2π

[
1 − f(Λ2/q2)

]
. (2.24)

Now, the current Vµ is classically conserved and is not anomalous either. Then, for a

product of operators such as Vµ(x)Vν(y), the conservation of Vµ should hold up to a local

term. Therefore, f cannot contain a negative power of q2. On the other hand, f cannot

contain a negative power of Λ in order to have a smooth conformal limit. Therefore, f must

be a constant, which implies that 〈L+R−〉(q) is also a constant, therefore, local. (This can

be also easily checked by a direct calculation a la [8].) While a choice of the constant f

has no effect on physics, a common choice is f = 1 so that 〈VµVν〉 is identically conserved

without any contact term. However, we instead choose f = 0, which will be convenient for

our 3d analysis in section 3. Hence, we have

〈LµRν〉(q) = 0 (mq → 0, Λ arbitrary). (2.25)

This has an obvious physical explanation — without mq, the left and right movers never

talk to each other, no matter what Λ is.

2.3.1 The conformal limit

In this section we specialize the conformal limit (Λ → 0 and mq → 0) of the ’t Hooft model.

Let us begin with (2.15). First, note that withoutmq or Λ there is no dimensionful quantity

that could make up m2
n. So we simply ignore the m2

n in the denominators in (2.15), and

we obtain

〈Lk+ Lk′+〉(q) =
iNc

π

δkk′

2k − 1

qk+k′

+

q2 + iε
,

〈Rk−Rk′−〉(q) =
iNc

π

δkk′

2k − 1

qk+k′

−
q2 + iε

(Λ → 0, mq → 0), (2.26)

where we have used the completeness relation of the ’t Hooft wavefunctions (2.3) and the

orthogonality of the Legendre polynomials. Next, because of (2.13) and (2.14), all the

remaining components of the LL and RR correlators are either literally zero, or vanishing

up to local terms by the equations of motion. So let us simply set all of them to zero. We

can then summarize the LL and RR correlators in a compact form:

〈L(k)
µ1···µk

L
(k′)
ν1···νk′

〉(q) =
iNc

π

δkk′

2k − 1

qL
µ1

· · · qL
µk
qL
ν1
· · · qL

νk′

q2 + iε
,

〈R(k)
µ1···µk

R
(k′)
ν1···νk′

〉(q) =
iNc

π

δkk′

2k − 1

qR
µ1

· · · qR
µk
qR
ν1
· · · qR

νk′

q2 + iε
(Λ → 0, mq → 0), (2.27)

where qL
µ and qR

µ are defined in (2.21). Note that these correlators vanish for k 6= k′, which

is consistent with conformal invariance which tells us that any two operators with different

scaling dimensions have a vanishing two-point correlator.
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Next, note that the U(1)A symmetry, which is unbroken in the conformal limit, forbids

X from having a nonzero two-point correlator with any L
(k)
µ1···µk

or R
(k)
µ1···µk

. Thus we have

〈X Ok〉(q) = 〈X† Ok〉(q) = 0 for all k , (2.28)

where Ok = L
(k)
µ1···µk

, R
(k)
µ1···µk

.

On the other hand, as far as the symmetries are concerned, L
(k)
µ1···µk

and R
(k)
µ1···µk

with

the same k may mix with each other. However, thanks to the fact that the conformal limit

is a free theory, one can easily see diagrammatically that

〈L(k)
µ1···µk

R
(k)
ν1···νk

〉(q) = 0 for all k . (2.29)

(Here we may, if we wish, add a local term to the right-hand side, which of course has no

effect on physics. We choose it to be zero.)

2.3.2 Operator mixing at O(Λ)

In this section, we stick to themq → 0 limit, but examineO(Λ) corrections to the correlators

studied in the previous section. Fortunately, we are not opening Pandora’s box, because

dimensional analysis and Lorentz invariance imply that the only correlators that can have

nontrivial O(Λ) pieces are 〈SOk〉 and 〈POk〉, where Ok = L
(k)
µ1···µk

, R
(k)
µ1···µk

. All other

correlators get corrections only starting at O(Λ2).

Let us begin with the mq → 0 limit of the PL correlator (2.19). First, note that by

integrating both sides of the ’t Hooft equation (2.2) over x, we obtain

m2
n

∫ 1

0
dx φn(x) = m2

q

∫ 1

0
dx

φn(x)

x(1 − x)
. (2.30)

For mn 6= 0, this naively seems to imply that
∫ 1
0 φn(x) dx = O(m2

q) → 0 as mq → 0. But

this is incorrect. To deduce the correct mq dependence, let us look at the high energy

behavior of the PP correlator (2.6). Since the ’t Hooft model is asymptotically free, we

can use the free-quark picture to calculate the PP correlator for Q2 ≡ −q2 ≫ Λ2, which

gives 〈PP 〉(q) ∝ logQ. On the other hand, in (2.6), this logQ behavior must arise from

summing over n. Since m2
n ∝ n for n ≫ 1, this can happen only if the combination

mq

∫
dxφn(x)/x(1 − x) becomes independent of n for n ≫ 1. Returning to (2.30), this

means that the correct behavior must be
∫ 1
0 dxφn(x) = O(mq) → 0 as mq → 0. So, to

parameterize this, let us define γn via

1

mq

∫ 1

0
dxφn(x) =

γn

Λ
as mq → 0 , (2.31)

for n 6= 0. The n = 0 case is an exception — recall that its behavior in the mq → 0 limit

is given in (2.9). We include this exception by defining γ0 = Λ/mq. Then, in the mq → 0

limit, (2.19) can be written as

〈P Lk+〉(q) =
Nc

2π

∑

n

qk
+

q2 −m2
n + iε

m2
n

Λ
Mk,nγn for k = odd. (2.32)
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Now it is manifest that the PL correlator begins at O(Λ). The PR correlator can be

obtained from the PL correlator by replacing q+ with q− and multiplying an overall −1.

Unfortunately, there is no such simple formula for 〈SLk+〉 or 〈SRk−〉.
For k = 1, the PL and PR correlators take especially simple forms. Note that (2.9)

implies M1,n = δn,0, and also recall that we have L− = 0 by definition. Therefore, (2.32)

with k = 1 becomes

〈P Lµ〉(q) =
Nc√

3

qL
µ

q2 + iε
Λ , (2.33)

where qL
µ is defined in (2.21). Similarly, we get

〈P Rµ〉(q) = −Nc√
3

qR
µ

q2 + iε
Λ . (2.34)

Note that, as long as mq → 0, these two formulas are exact at the leading order in

1/Nc expansion.

2.4 (Apparent) Chiral symmetry breaking

The O(Λ) correlators derived in the previous section seem quite puzzling. Notice that, by

combining (2.33) with the fact that 〈SL+〉 = 0 (i.e. the k = 1 case in (2.17)), we obtain

〈XL+〉 6= 0. Since X is charged under U(1)A while L+ is neutral, this means that U(1)A is

spontaneously broken. (There is no explicit breaking since mq = 0.) Even simpler, the fact

that the scalars and the pseudoscalars are not degenerate in mass indicates that U(1)A is

broken. However, in two dimensions, the Coleman-Mermin-Wagner (CMW) theorem [12]

states that there is no spontaneous breaking of a continuous internal symmetry, in the

sense that any correlation function with a net U(1)A charge (such as 〈XL+〉) must vanish!

So it seems that the 1/Nc expansion gets the vacuum wrong or assigns wrong charges to

the operators.

To understand how the 1/Nc expansion might get the U(1)A charges wrong, imagine

a 2-to-2 scattering process between, say, two n = 1 mesons. We are interested in questions

about the vacuum, so let us restrict the momenta to be much less than O(Λ). Then, the

process is dominated by the exchange of the massless n = 0 meson. By dimensional analysis

and large-Nc counting, the relevant piece of the effective Lagrangian schematically is

Leff ∼ ∂φ0 ∂φ0 + ∂φ1 ∂φ1 +m2
1 φ1φ1 +

Λ2

√
Nc
φ0 φ1φ1 + · · · . (2.35)

Therefore, the amplitude M for this scattering process is given by

M ∼
(

Λ2

√
Nc

)2
1

(
√
m1)4

1

p2
∼ Λ4

Ncm2
1 p

2
, (2.36)

where (
√
m1)

4 arises from taking into account the fact that the φ1 particles here are non-

relativistic, and p≪ Λ is the magnitude of the spatial momentum transfer in the process.

Perturbative unitarity then requires this amplitude to be <∼ Λ2/m2
1, so this description
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is actually valid only for p >∼ pc ≡ Λ/
√
Nc. Therefore, we do not really know the true

long-distance dynamics. In particular, since φ0 gets strongly coupled to φ1 at distances of

order p−1
c , the true state describing an n = 1 meson is not well-approximated at all by the

state created by the φ1 field above. Thus, in particular, we cannot relate the U(1)A charge

of the physical n = 1 meson to that of the φ1 field. In other words, the real n = 1 meson

is a φ1 meson accompanied by virtual φ0 mesons, and this ‘cloud’ of the φ0 field effectively

screens the charge of the meson. Thus, in the 1/Nc expansion we do not know the charges

of the mesons, hence we do not know if U(1)A is broken.

However, any analysis that only involves distances shorter than O(p−1
c ) should not

care about what is going on outside the ‘cloud’. In particular, since the scale pc is much

lower than Λ for large Nc, we can trust our meson spectrum. Also, all correlators we have

calculated should be valid at energies above O(Λ/
√
Nc). (See ref. [13] for a discussion on

the similar ‘puzzle’ in the Thirring model.)

For our purpose, a crucial question is whether or not the 3d dual should exhibit this

‘apparent’ chiral symmetry breaking. Since loop expansion in the 3d dual should agree

order-by-order with 1/Nc expansion in the 2d side, tree-level analyses in the 3d side should

reproduce every aspect of the leading-order results in 1/Nc expansion in the 2d side, in-

cluding things that 1/Nc expansion gets ‘wrong’ ! In fact, we will see in section 3.3 how

the 3d dual incorporates this ‘apparent’ chiral symmetry breaking.

3. Aspects of the 3D dual

In this section we will construct the 3d dual of the ’t Hooft model. As we have discussed in

section 1, we will focus on two-point correlation functions, hence our 3d Lagrangian will be

just quadratic in bulk fields. What should the 3d geometry be? Since the ’t Hooft model is

asymptotically free, it is nearly conformal in the deep UV. Therefore, naturally, our zeroth-

order geometry should be AdS3, corresponding to the conformal limit of the ’t Hooft model.

Then, for z ≪ Λ−1, conformal symmetry breaking effects can be parameterized as small

deviations from the exact AdS3, which can be analyzed order-by-order in Λ. Here we should

emphasize the fact that expanding the exact correlators (the ones in section 2.3) in powers

of Λ is different from doing perturbation theory in g, despite the fact Λ ∝ g. For example,

recall that 〈PLµ〉 ∝ Λ. Clearly, we cannot get this result from first-order perturbation in

g-exchanging one gluon already costs us g2. If we trace back where the Λ comes from in

section 2.3.2, we see that it uses information about the spectrum (specifically the mass of

the lightest meson), which cannot be understood by perturbative expansion in g.

The aim of this somewhat long section is the following. Note that our ultimate goal is

to understand the full 3d quadratic action including all fields dual to the primary operators.

Those fields mix with one another, but it is difficult to see a priori what the mixing pattern

is. Therefore, it is useful to study the structure of the 3d action for the fields dual to low

spin operators. It is also reassuring to see that our ‘program’ works to O(Λ).

This section is organized as follows. First, in section 3.1, we discuss some exact results

which are a beautiful application of the Chern-Simons term in 3d. Then, in section 3.2,

we map the conformal limit of the ’t Hooft model onto a theory in AdS3, and then will

– 13 –



J
H
E
P
0
1
(
2
0
0
9
)
0
1
3

analyze O(Λ) conformal symmetry breaking effects in section 3.3. Throughout the entire

section 3, we will restrict to the mq → 0 case, but the case with a finite quark mass clearly

deserves a separate study.

We adopt the notation (xM ) = (xµ, z) where M = 0, 1, 3 and µ = 0, 1, with the

AdS3 metric

ds2 =
1

z2
ηMN dxMdxN , (3.1)

where (ηMN ) = diag(1,−1,−1). We will raise and lower indices using ηMN , rather than

gMN , so as to make z dependence always explicit. We will work in the mq → 0 limit, unless

otherwise stated explicitly.

3.1 The anomalies and the Chern-Simons terms

As we will see, there are some common features to the quadratic actions for the bulk fields

that are dual to the U(1)A-neutral primary operators discussed in section 3.2.1. One of

them is that they all contain Chern-Simons terms. The Chern-Simons terms are quadratic

in 3d, so they are entitled to be included in our quadratic action. In fact, it turns out that

not only they must be included for symmetry reasons, but also they are fully responsible

for generating non-trivial correlators between primary operators with non-zero spin, such

as Lµ, Rµν , etc. In this section, we analyze the quadratic action for the fields dual to

Lµ and Rµ, which is the simplest example that illustrates the role played by the Chern-

Simons terms.

Recall that the correlators (2.20) and (2.25) are completely independent of Λ. Since

conformal symmetry breaking effects correspond to turning on some backgrounds in the 3d

bulk and deforming the geometry away from AdS3, the Λ-independence of (2.20) and (2.25)

means that 3d calculations leading to these correlators must be completely insensitive to

the backgrounds somehow. So, in this section, we would like to understand from the 3d

perspective why this is so.6

First, corresponding to the Noether currents Lµ and Rµ for the U(1)L ⊗U(1)R global

symmetry, we introduce 3d gauge fields LM and RM for the U(1)L⊗U(1)R gauge symmetry.

The values of the bulk gauge fields at the z = 0 boundary, ℓµ(x) ≡ Lµ(x, 0) and rµ(x) ≡
Rµ(x, 0), are identified as the sources for the 2d operators Lµ and Rµ. We then perform 3d

path integral for fixed ℓ(x) and r(x) to obtain an effective action which is a functional of ℓ(x)

and r(x). This effective action is then interpreted as the 2d generating functional W [ℓ, r],

from which we can obtain any correlation functions involving Lµ and Rµ. Following our

general philosophy, we only consider two-point correlators, and in this section we restrict

our attention to two-point correlators between Lµ and Rµ only, namely, (2.20) and (2.25).

We first consider the LL and RR correlators (2.20), i.e. the effective action WLL[ℓ] and

WRR[r], where WLL[ℓ] is a quadratic functional of only ℓ(x), and likewise for WRR[r].

6There are also other exact results that are proportional to Λ, such as (2.33) and (2.34). Since discussing

these requires some information about the conformal limit, we will come back to them after section 3.2.
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The key is to look at the anomalies of the LL and RR correlators. Even though Lµ

and Rµ are both conserved classically, taking the divergence of (2.20) gives

qµ〈LµLν〉(q) =
iNc

4π
(qν + q̃ν) , qµ〈RµRν〉(q) =

iNc

4π
(qν − q̃ν) , (3.2)

where q̃ν ≡ ǫνρ q
ρ. It is important to note that no terms in (3.2) can be adjusted by adding

local terms to the right-hand sides of (2.20). For example, naively, it might seem that

we could add to 〈LµLν〉 a local term −iηµνNc/(4π) to cancel the qν term appearing in

qµ〈LµLν〉. However, with such a local term, 〈LµLν〉 would not vanish when µ or ν is −,

which contradicts with the fact that there is no L−. On the other hand, a local term that

would shift the coefficient of the q̃ν term would have to be proportional to ǫµν , which is

impossible, however, because 〈LµLν〉(q) must be symmetric under µ ↔ ν and q → −q.
Therefore, since the nonzero divergences (3.2) cannot be cancelled by adding local terms

to 〈LµLν〉 or 〈RµRν〉, (3.2) represent anomalies of these correlators.

This then implies that, under ℓµ(x) → ℓµ(x) + ∂µξℓ(x), WLL[ℓ] changes as

WLL[ℓ] −→ WLL[ℓ] +

∫
d2q

(2π)2
ℓµ(−q) 〈LµLν〉(q) qνξℓ(q)

= WLL[ℓ] +
iNc

4π

∫
d2q

(2π)2
ℓµ(−q) (qµ + q̃µ) ξℓ(q) . (3.3)

On the other hand, in the 3d side, we have the U(1)L gauge transformation

LM (x, z) → LM (x, z) + ∂M ξℓ(x, z) , (3.4)

where ξℓ(x, 0) = ξℓ(x). The variation (3.3) then clearly shows that the 3d Lagrangian for

LM must contain a term other than the kinetic term F (L)
MN F (L)MN . The non-invariance

cannot be due to a mass term in the bulk, however; Such a mass term can only arise

from the Higgs mechanism in the bulk, which would correspond to the (apparent) chiral

symmetry breaking discussed in section 2.4, but the correlators (2.20) contain no Λ and

thus do not see the (apparent) chiral symmetry breaking. Therefore, the gauge symmetry

must be intact in the bulk, and it may be violated only by the presence of the boundary.

Then, it is easy to see that the qµ term of (3.3) must be reproduced by a boundary mass

term −Nc
8π LµLµ at z = 0. Put another way, recall that the qµ term would be absent if we

added a local term that violates the identity L− = 0. Therefore, the above boundary mass

term is telling AdS3 that there is no such thing as L−.

What about the q̃µ term? Since it has an ǫ tensor in it, the only possible quadratic

term in the bulk is the Chern-Simons term Nc
4π ǫ

LMNLL∂MLN (ǫ013 = +1). Under the

U(1)L gauge transformation (3.4), this is invariant up to a total derivative which precisely

yields the boundary term we want to match the q̃µ term in (3.3)! Repeating the same

analysis for Rµ leads to the same coefficient for the RM boundary mass term, while the

opposite-sign coefficient for the RM Chern-Simons term, due to the opposite signs in (3.2).

Thus, we have exactly determined the part of the 3d action responsible for the anomalies
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of the correlators (2.20) and (2.25):

SL,R = Sbulk
L,R +

Nc

4π

∫
d2x dz ǫLMN

(
LL ∂MLN −RL ∂MRN

)

−Nc

8π

∫
d2x

[
LµLµ + RµRµ

]
z=0

, (3.5)

where Sbulk
L,R refers to gauge-invariant bulk terms (such as the kinetic terms for LM and

RM ), which do not contribute to the divergence of the LL and RR correlators.

There are a few key things to notice here. First, the Chern-Simons and the boundary

mass terms are both completely insensitive to the bulk geometry or any background turned

on in the bulk. This is obviously true for the boundary terms. The Chern-Simons term is

insensitive to the bulk geometry, simply because the metric never appears there. Further-

more, its gauge invariance (up to a total derivative) forbids a z-dependent background to

multiply LL∂MLN . Therefore, nothing can feel a source of conformal symmetry breaking,

hence the divergence of the LL and RR correlators (3.2) must be exactly correct even in

the presence of Λ.

This in turn implies the following. Note that the correlators (2.20) are unique once

the divergences (3.2) are given. Therefore, even without knowing anything about Sbulk
L,R , we

know that the 3d side will give the correct LL and RR correlators regardless of the bulk

geometry or other backgrounds turned on in the bulk! From the 3d perspective, this is

nontrivial because once we turn on Λ all bulk fields mix with one another. We will explicitly

see in section 3.2.1 how the 3d side ‘knows’ that the conformal result is actually exact.

There is also a nice interpretation of the different choices of f in (2.22) on the 3d side.

Note that the boundary terms above correspond to our particular choice of f , namely,

f = 0. If we choose f = 1 instead so as to have qµ〈Vµ Vν〉 = 0 without any contact

term, repeating the above exercise tells us that there should be an additional mass term
Nc
4π LµRµ at the z = 0 boundary in order to match the nonzero divergence of the LR

correlator (2.22). Note that this new mass term plus the existing ones amount to a mass

term AµAµ for AM ≡ LM −RM . Similarly, a new Chern-Simons term must be added as

well, which together with the old ones becomes a single term ǫLMNAL∂MVN . This is the

3d manifestation of the well-known fact that any U(1)V -preserving counterterm necessarily

violates U(1)A.

3.2 The conformal limit

As we have seen, the 3d action for the fields dual to the U(1)A-neutral primary operators

Lµ1···µk
and Rµ1···µk

has the feature that in the conformal limit it is essentially governed by

the Chern-Simons term. In section 3.2.1 and 3.2.2, we will study the spin-1 and -2 cases

in detail and verify this feature. We then remark on the general structures for higher spin

cases in section 3.2.3, and analyze the spin-0 case in section 3.2.4, which in the conformal

limit is just a standard AdS/CFT calculation.

3.2.1 The spin-1 sector

This sector consists of operators Lµ and Rµ. In the conformal limit, the quadratic part of

the Lagrangian is given by (3.5) with Sbulk
L,R being just the kinetic terms for LM and RM
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in the AdS3 background:

Sbulk
L,R =

∫
d2x dz

[
− z

4g2
3

F (L)
MNF (L)MN − z

4g2
3

F (R)
MNF (R)MN

]
, (3.6)

where g3 is the gauge coupling which is chosen to be the same for LM and RM because the

’t Hooft model respects parity. First, since LM and RM do not couple in the Lagrangian,

the correlator (2.25) is trivially reproduced. Next, as we have pointed out, the 3d side

should give us the exact LL and RR correlators to all orders in Λ. Since the correlators

(2.20) have no Λ, this actually means that the 3d result should only depend on the fact

that the background is asymptotically AdS3, i.e., the bulk Lagrangian can be anything as

long as it asymptotically takes the form (3.6) as z → 0. Let us see how this comes out.

Since the Lagrangian for LM and that for RM are the same except for the sign of the

Chern-Simons term, let us look at LM . We choose a gauge where L3 = 0. Furthermore,

it is convenient to decompose Lµ(q, z) (where q is the 2d momentum) into its longitudinal

and transverse components:

Lµ =
iqµ
q2

L‖ +
iǫµνq

ν

q2
L⊥ , (3.7)

where L‖ is the longitudinal component, i.e. ∂µLµ = L‖, while L⊥ the transverse. The

constraint equation arising from varying the Lagrangian with respect to L3 and setting

L3 = 0 is

1

g2
3

zL′
‖ +

Nc

2π
L⊥ = 0 , (3.8)

where the prime denotes a z derivative, and the coefficients should make clear the origin of

each term. The equation of motion in the bulk for an Euclidean momentumQ2 ≡ −q2 > 0 is

1

g2
3

[
z(zL′

⊥)′ −Q2z2L⊥
]
+
Nc

2π
zL′

‖ = 0 . (3.9)

The solution to these equations which vanishes as z → ∞ are

L⊥(q, z) =
Kν(Qz)

Kν(Qǫ)
L⊥(q, ǫ) , (3.10)

where Kν(x) is the modified Bessel function of the second kind with ν ≡ g2
3Nc/(2π). Note

that we have introduced a short-distance cutoff by moving the boundary to z = ǫ > 0.

Repeating this exercise for RM is a trivial task.

Now, upon plugging the solutions into the action, there is an important intermediate

step which provides a crucial insight. Regarding z as “time”, we find that the action as

a functional of the “initial conditions” at z = ǫ takes the following form for any L and R
that vanish at z = ∞:

SL,R = −
∫

d2q

(2π)2

[
ǫ

2g2
3Q

2

{
L⊥(−q)L′

⊥(q) + R⊥(−q)R′
⊥(q)

}

+
Nc

4πQ2

{
L‖(−q)L⊥(q) −R‖(−q)R⊥(q)

}

+
Nc

8π

{
Lµ(−q)Lµ(q) + Rµ(−q)Rµ(q)

}]

z=ǫ

, (3.11)
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where everything is evaluated at z = ǫ. Note that, since Kν(Qz) ∝ z−ν for small z, we

have ǫL′
⊥(q, ǫ) = −νL⊥(q, ǫ) +O(ǫ). Now we can take the ǫ→ 0 limit, and in terms of the

original Lµ and Rµ variables, we get

SL,R = −Nc

2π

∫
d2q

(2π)2

[
Lµ(−q)

qL
µ q

L
ν

q2 + iε
Lν(q) + Rµ(−q)

qR
µ q

R
ν

q2 + iε
Rν(q)

]

z=0

, (3.12)

where we have analytically-continued back to the Minkowski momentum. This effective

action exactly gives (2.20) regardless of the value of g3, as we have expected.

In the above derivation, one should observe that the action was dominated by the

leading small-z behaviors of L⊥ and R⊥. (The only property of Kν(Qz) that was actually

used is that it behaves as z−ν for small z.) This means that the effective action (3.12) is

actually completely insensitive to the breaking of conformal invariance, because the leading

small-z behavior is fixed by the requirement that the theory be asymptotically AdS3 for

small z, reflecting the asymptotic freedom of the ’t Hooft model. Therefore, the 3d dual

also knows that the correlators (2.20) are exact!

3.2.2 The spin-2 sector and the gravitational Chern-Simons term

In this sector, we have the operators Lµν and Rµν , as discussed in section 2.2. Even though

the spin-2 case has the same feature as spin-1 that the Chern-Simons term completely

governs the conformal limit, there is an important difference; while the conformal result

is actually exact in the spin-1 case, it will receive Λ dependent corrections for spin-2 and

higher. Therefore, the spin-2 case serves as a ‘prototype’ for all higher spin cases, exhibiting

all the common qualitative features and complexities.

Setting k = 2 in (2.27), the correlators in the conformal limit are

〈Lµν Lρσ〉(q) =
iNc

3π

qL
µ q

L
ν q

L
ρ q

L
σ

q2 + iε
,

〈Rµν Rρσ〉(q) =
iNc

3π

qR
µ q

R
ν q

R
ρ q

R
σ

q2 + iε
. (3.13)

We also have 〈Lµν Rρσ〉(q) = 0 from (2.29). In the full interacting theory, the linear

combination (Lµν +Rµν)/2 is the energy-momentum tensor which is conserved. However,

in the conformal limit, Lµν and Rµν are separately conserved. Correspondingly, in the 3d

side, there must be two ‘gravitons’, LMN and RMN , where the graviton is the combination

LMN + RMN .

Below, we begin with some formalisms concerning spin-2 fields, in particular, the

gravitational Chern-Simons term [14]. Then, following a similar path as the spin-1 case,

we first match anomalies and fix the coefficients of the Chern-Simons terms, then we

will derive the correlators, and find that the correlators are already fixed by the Chern-

Simons, that is, the 3d predictions of 〈Lµν Lρσ〉 and 〈Rµν Rρσ〉 turn out to be completely

independent of the value of M∗ (i.e. the 3d Planck scale). These are completely parallel to

the spin-1 case. But we will also see where differences come in once we turn on Λ.
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First, some generalities.7 We write the full metric gAB as

gAB = ĝAB + hAB , (3.14)

where ĝAB is the background AdS3 metric, and hAB is the fluctuation around the back-

ground. (Later when we apply the formalism to our problem, hAB will be LAB or RAB .)

Then, general covariance is equivalent to gauge invariance under the following transforma-

tion of hAB :

hAB −→ hAB + ∇AξB + ∇BξA , (3.15)

where ξA is an infinitesimal transformation parameter, and terms of O(ξh) or higher are

dropped. In our coordinates (3.1), this becomes

δh33 =
2

z
(zξ3)

′ , (3.16)

δh3α = ∂αξ3 +
1

z2
(z2ξα)′ , (3.17)

δhαβ = ∂αξβ + ∂βξα +
2

z
ηαβξ3 , (3.18)

where the primes denote a z derivative. It allows us to choose a gauge where

h33 = h3α = 0 . (3.19)

This does not completely fix the gauge, however, and the (useful part of) residual gauge

transformations which preserve the h3A = 0 gauge can be parameterized as

ξα(x, z) =
1

z2
ξ̃α(x) , ξ3 = 0 , (3.20)

where ξ̃α(x) is independent of z. Then, in terms of h̃αβ defined via

hαβ ≡ 1

z2
h̃αβ , (3.21)

the residual gauge transformation reads

h̃αβ(x, z) −→ h̃αβ(x, z) + ∂αξ̃β(x) + ∂β ξ̃α(x) . (3.22)

Note that the shift of h̃αβ is independent of z. In other words, the zero mode (i.e. the

z-independent mode) of h̃αβ transforms exactly like the ‘graviton’ in flat 2d space.8

7In this section, we distinguish two types of indices. When an index is L,M,N, · · · (or µ, ν, ρ, · · · when

referring to only 2d coordinates), it is raised and lowered using ηMN , which is the convention used in

all other sections in the paper. On the other hand, when an index is A,B,C, · · · (or α, β, γ, · · · when

referring only to the 2d coordinates), it is raised and lowered using the honest AdS3 metric ĝAB. The

spacetime covariant derivative ∇A is covariant with respect to the AdS3 background ĝAB (i.e. not including

the fluctuations hAB), unless otherwise noted.
8The rest of the residual gauge transformation takes the form ξα = − 1

2
∂αζ(x), ξ3 = 1

z
ζ(x), and h̃αβ →

h̃αβ − z2∂α∂βζ(x) + 2ηαβζ(x). At the z = 0 boundary with hMN = LMN , this gauge transformation gives

〈Lµ
µLρσ〉, but this is unphysical because it can be set to zero by adding local terms to 〈LµνLρσ〉.

– 19 –



J
H
E
P
0
1
(
2
0
0
9
)
0
1
3

Now, at the quadratic order in hAB , the usual Einstein-Hilbert term plus the cosmo-

logical constant is equal (neglecting total derivatives) to

LEH = M∗

[
1

4
(∇AhBC)∇AhBC − 1

2
(∇AhBC)∇BhAC +

1

2
(∇Ah)∇Bh

AB − 1

4
(∇Ah)∇Ah

+
h2

2
− hABhAB

]
, (3.23)

where h ≡ hA
A and M∗ is the 3d Planck scale. The last two terms look like ‘mass’ terms,

but they are actually required by gauge invariance. In fact, under the full gauge transfor-

mation (3.15), LEH transforms as

LEH −→ LEH +M∗∇A

[
hξA − hABξB + (∇Bξ

A)∇Ch
BC − (∇Bξ

C)∇Ch
AB

+
1

2
(∇Bh)

(
∇AξB −∇BξA

)]
, (3.24)

so it is gauge invariant up to a total derivative. In our coordinates (3.1) and gauge (3.19),

the action from the Lagrangian (3.23) becomes

SEH = M∗

∫
d2x

dz

z

[
1

4
(∂M h̃νρ) ∂

M h̃νρ − 1

2
(∂µh̃νρ) ∂

ν h̃µρ +
1

2
(∂µh̃) ∂ν h̃

µν − 1

4
(∂M h̃) ∂M h̃

]

−M∗

∫
d2x

1

ǫ2

[
1

2
h̃µν h̃

µν − 1

4
h̃2

]

z=ǫ

, (3.25)

where h̃ ≡ h̃µ
µ. Note that there are no longer ‘mass’ terms in the bulk, while boundary mass

terms have appeared at z = ǫ. Although they diverge as ǫ→ 0, they are merely local, thus

we simply throw them away. Then, SEH will be completely invariant under the residual

gauge transformation (3.22). (Hereafter, when we refer to (3.25), the last two terms at

z = ǫ will not be included.)

On the other hand, the gravitational Chern-Simons term can be constructed by a

direct analogy with the Chern-Simons term for a non-Abelian gauge field [15]. We define

ΓA to be a matrix whose B
C -component is equal to the Christoffel coefficient ΓB

AC , that

is, (ΓA)BC ≡ ΓB
AC . Similarly, we define R̂AB to be a matrix whose components are given

by the Riemann tensor RC
DAB, that is, (RAB)CD ≡ RC

DAB . For example, in this notation,

we have

RAB =
[
∂A + ΓA, ∂A + ΓB

]
, (3.26)

so ΓA and RAB are exactly analogous to a non-Abelian gauge field AA and its field-

strength FAB . Then, from the form of the Chern-Simons term for the non-Abelian gauge

field, ǫABC Tr
[

1
2AAFBC − 1

3AAABAC

]
, we can immediately write down the gravitational

Chern-Simons term ΩCS:

ΩCS = ǫABC Tr

[
1

2
ΓARBC − 1

3
ΓAΓBΓC

]
. (3.27)
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Under the gauge transformation (3.15), the gravitational Chern-Simons form (3.27) trans-

forms as

ΩCS −→ ΩCS + ∂A(ξAΩCS) + ǫABC(∂A∂Dξ
E) ∂BΓD

CE . (3.28)

Then, the action for hAB is SEH + SCS where

SCS ≡ c

∫
d2x dz ΩCS , (3.29)

with a constant c to be determined below. In our coordinates (3.1) and gauge (3.19),

this becomes

SCS = c

∫
d2x dz ǫµν

[
1

2
(∂ρh̃µσ)(∂ρh̃′σν − ∂σh̃′ρν ) − 1

2
h̃′µρh̃

′′ρ
ν )

]
, (3.30)

while the gauge transformation (3.28) reduces to the following boundary term at z = 0:

δSCS = − ic
2

∫
d2q

(2π)2
ξ̃ν(−q) q̃ν q̃ρq̃σ h̄ρσ(q) , (3.31)

where q̃µ ≡ ǫµνq
ν , and h̄µν(q) ≡ h̃µν(q, z)|z=0. (Note that ξ̃µ is defined in (3.20); it is

not ǫµνξ
ν).

We now apply the formalism to the construction of the 3d dual of the Lµν -Rµν sector.

Since 〈LµνRρσ〉 = 0 in the conformal limit, and the difference between the LL and RR

sectors are trivial sign differences, we consider the LL correlator below, and point out

whenever there is a sign difference for the RR case. The following calculations can be

divided in two parts; the first part is analogous to the analysis in section 3.1 where we

match anomalies and fix the normalization of SCS, while the second part is the spin-2

version of section 3.2.1 where we compute the whole correlators.

First, to determine c in SCS, let us look at the divergence of 〈Lµν Lρσ〉. From (3.13),

we have

qµ〈Lµν Lρσ〉 =
iNc

48π
[Aνρσ +Bνρσ + Cνρσ] , (3.32)

where

Aνρσ = 2q̃ν q̃ρq̃σ , (3.33)

Bνρσ = 2qνqρqσ − q2ηρσqν − q2ηνρqσ − q2ηνσqρ , (3.34)

Cνρσ = 2qνqρqσ + q2ηρσ q̃ν + qν(q̃ρqσ + qρq̃σ) . (3.35)

Here, the B and C terms are actually not interesting, since they can be completely re-

produced by just adding local terms at the z = 0 boundary. Specifically, the B term is

reproduced by adding

∆S(B)
z=0 = − Nc

48π

∫
d2x h̄µν(−q)

[
(ηµνqρqσ + ηρσqµqν)

−q
2

2
(ηµρηνσ + ηνρηµσ + 3ηµνηρσ)

]
h̄ρσ(q) , (3.36)
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while the C term by

∆S(C)
z=0 = − Nc

24π

∫
d2q

(2π)2
h̄µν(−q)

[
ηµνq

L
ρ q

L
σ + ηρσq

L
µ q

L
ν

]
h̄ρσ(q) . (3.37)

Repeating the same exercise for 〈Rµν Rρσ〉 leads the same results except that all qL are

replaced by qR. Since they are local, they have no effect on the physics. In the following

discussions, we will simply ignore them (and the corresponding B and C terms in (3.32)).

It thus all comes down to getting the A term in (3.32). In terms of the source ℓµν(x)

of Lµν(x), it implies that the generating functional W [ℓ] should transform under ℓµν →
ℓµν(x) + ∂µξ̃ν + ∂ν ξ̃µ as

W −→W − iNc

24π

∫
d2q

(2π)2
ξ̃ν(−q)Aνρσ ℓ

ρσ(q) . (3.38)

Since Aνρσ is ‘parity odd’ (i.e. it contains an odd number of ǫ tensors), it must come from

varying SCS. Indeed, comparing this to (3.31) with h̄µν = ℓµν , we see that this can be

exactly reproduced by the gravitational Chern-Simons term (3.30) if we choose

c =
Nc

6π
. (3.39)

Repeating the same exercise for 〈Rµν Rρσ〉 gives c = −Nc/6π instead.

Now that the divergence of 〈Lµν Lρσ〉 is completely reproduced, our next task is to

calculate the correlator itself. It is convenient to parameterize hµν as9

hµν =
qµqν
q2

φ+
ηµν

2
(h− φ) +

qµq̃ν + q̃µqν
2q2

χ , (3.40)

where q̃µ ≡ ǫµνq
ν . An advantage of this decomposition is that it ‘diagonalizes’ (3.25):

SEH =
M∗
8

∫
d2q

(2π)2
dz

z
(−φ′φ′ + h′h′ + χ′χ′) . (3.41)

Note that there is no q2 appearing here, i.e. the 3d gravity has no propagating degrees

of freedom. On the other hand, the Chern-Simons term (3.30) mixes h, φ, and χ and

introduces q2 dependencies:

SCS =
c

4

∫
d2q

(2π)2
dz

[
−q

2

2
(h− φ)χ′ +

q2

2
(h′ − φ′)χ+ χ′φ′′ − χ′′φ′

]
. (3.42)

The h-φ-χ variables are also convenient for analyzing gauge transformation properties. In

terms of the longitudinal and transverse components of ξµ(q) defined as

ξ̃µ(q) =
iqµ
2q2

ξ‖(q) +
iq̃µ
2q2

ξ⊥(q) , (3.43)

9Hereafter, we will drop the tildes of h̃µν and h̃ to avoid notational clutter.
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the residual gauge transformation (3.22) can be written as

φ(q, z) −→ φ(q, z) + ξ‖(q) , (3.44)

h(q, z) −→ h(q, z) + ξ‖(q) , (3.45)

χ(q, z) −→ χ(q, z) + ξ⊥(q) . (3.46)

The advantage of this notation is that we immediately see that h− φ is gauge invariant.

Now, following our gauge choice (3.19), the constraint equations are (see appendix C

for the derivation):

h′

z
− q2

2
(h− φ) +

c

M∗
q2 zχ′ = 0 , (3.47)

h′

z
− φ′

z
− 2c

M∗
χ′′ = 0 , (3.48)

χ′

z
+

c

M∗

[
2φ′′ − q2(h− φ)

]
= 0 . (3.49)

One may also derive the equations of motion by varying the action SEH +SCS with respect

to hµν . However, those equations of motion are redundant — they all can be derived from

the constraint equations (3.47)-(3.48).

Now, we can use the constraint equations (3.47)-(3.49) to simplify the action SEH+SCS

and write it as boundary terms:

SEH + SCS =

∫
d2q

(2π)2

[
M∗q2

16
(h− φ)2 +

cq2

8
(h− φ)χ− cq2

8
(h− φ) zχ′

]z=∞

z=ǫ

. (3.50)

Next, notice that the constraint equations (3.47)–(3.49) imply

z2χ′′′ + zχ′′ +
(
q2z2 − α2

)
χ′ = 0 , (3.51)

where α ≡M∗/2c, and

h(z) − φ(z) = h̄− φ̄+
1

α
[zχ′(z) − χ(z)] − 1

α
[ǫχ′(ǫ) − χ̄] , (3.52)

where the barred fields denote the corresponding 2d sources at the z = ǫ boundary, i.e.,

h̄(q) ≡ h(q, ǫ), etc. In the AdS/CFT correspondence, the 2d sources are located only at

the z = ǫ boundary, so both h− φ and χ′ must vanish as z → ∞ (for Euclidean momenta

q2 ≡ −Q2 < 0) so that the action (3.50) only gets contributions from the z = ǫ end. From

the above expression of h − φ, we see that h − φ can vanish only if χ′ is exponentially

damped (hence χ approaches a constant) as z → ∞, that is, only if χ′ is proportional

to K|α|(Qz), without I|α|(Qz) component. Furthermore, since χ′ is invariant under the

residual gauge transformation (3.46), the proportionality factor can only depend on h̄− φ̄,

but not on χ̄. Therefore, we have

χ′(z) = A (h̄− φ̄)K|α|(Qz) , (3.53)
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where A is a numerical constant to be determined below. Integrating this then gives

χ(z) = χ̄+A (h̄− φ̄)

∫ z

ǫ
K|α|(Qz

′) dz′ . (3.54)

So requiring that h(z) − φ(z) vanish at z = ∞, we have

0 = h̄− φ̄− 1

α
χ(∞) − 1

α
[ǫχ′(ǫ) − χ̄]

= (h̄− φ̄)

[
1 − A

α

(∫ ∞

ǫ
K|α|(Qz

′) dz′ + ǫK|α|(Qǫ)

)]
. (3.55)

This determines A, and we find

χ′(z) = (h̄− φ̄)
αK|α|(Qz)∫∞

ǫ K|α|(Qz′) dz′ + ǫK|α|(Qǫ)
. (3.56)

For |α| ≥ 1, this implies

lim
ǫ→0

ǫχ′(ǫ) = sgn(c) (|α| − 1)(h̄− φ̄) , (3.57)

where sgn(c) is the sign of c, namely, +1 for hMN = LMN while −1 for hMN = RMN .

Then, putting this into (3.50), we obtain

SEH + SCS =

∫
d2q

(2π)2

[
−M∗q2

16
(h̄− φ̄)2 − cq2

8
(h̄− φ̄)χ̄+

|c|(|α| − 1)q2

8
(h̄− φ̄)2

]

=

∫
d2q

(2π)2

[
−cq

2

8
(h̄− φ̄)χ̄− |c|q2

8
(h̄− φ̄)2

]
, (3.58)

where we see that the M∗ term has completely cancelled out since α = M∗/2c. This is

exactly analogous to what has happened to the LM -RM sector in section 3.2.1 where the

result became completely independent of the value of g3.

To check that the above result agrees with the 2d result (3.13), let us translate the

result (3.58) back to the original hµν variable, note that

h̄− φ̄ = −2
q̃µq̃ν
q2

h̄µν , χ̄ = −2
qµq̃ν
q2

h̄µν . (3.59)

Then, (3.58) becomes

SEH + SCS = −
∫

d2q

(2π)2
h̄µν(−q)

[
c

4

q̃µq̃νqρq̃σ + qµq̃ν q̃ρq̃σ
q2

+
|c|
2

q̃µq̃ν q̃ρq̃σ
q2

]
h̄ρσ(q) . (3.60)

Let us check this for the LL correlator (i.e. c = +Nc/6π, and h̄µν = ℓµν). Then, this

formula gives

〈Lµν Lρσ〉(q) =
iNc

24π

4qµqνqρqσ + qµqν(qρq̃σ + q̃ρqσ) + (q̃µqν + qµq̃ν)qρqσ
q2

+(local terms) . (3.61)

Notice that the 2d formula (3.13) has exactly the same nonlocal piece.
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Finally, let us comment briefly on what happens if |α| < 1. In this case, the ǫ→ 0 limit

converges in the denominator of (3.56), so χ′(z) is just K|α|(Qz) times an ǫ-independent

factor. Then, ǫχ′(ǫ) ∝ ǫ1−|α| → 0 as ǫ → 0, therefore the last term in (3.58) vanishes.

In this case, the 3d calculations would agree with the 2d results only if M∗ = 2|c| which,

however, is outside the range |α| < 1. Therefore, the |α| < 1 case would lead to wrong

correlators. On the other hand, the correlators from the 3d side are correct for any |α| ≥ 1,

as we have seen above.

3.2.3 Higher-spin operators

The general features common to the correlators between primary operators with spin > 2

(i.e. k > 2 in (2.27)) are all already present in the spin-2 case discussed in section 3.2.2.

Here we just summarize those features. First, just like the case with any k, there are two

bulk fields LM1···Mk
and RM1···Mk

(all the indices being symmetrized) corresponding to the

left- and right-moving sectors in 2d. As usual, we only focus on the two-point correlators,

so we are only concerned with the quadratic part of the action for LM1···Mk
and RM1···Mk

.

In this case, the ‘kinetic term’ (the analog of FMNFMN of the k = 1 case or SEH of

the k = 2 case) is constrained by the generalization of the gauge transformation (3.15)

where the gauge-transformation parameter ξA is replaced by a traceless, totally-symmetric

rank-(k − 1) tensor ξM1···Mk−1
. (A traceful component would be the gauge-transformation

parameter for a field with lower k.) They also have the analog of the Chern-Simons term

SCS. While the ‘kinetic’ term is identical for the left and right sectors, their ‘Chern-Simons’

terms differ by a sign. This aspect is common to all k.

Now, one of the properties shared by all k ≥ 2 cases (but not by k = 1) is that the

equations of motion are all redundant and can be derived from the constraint equations.

(We have seen this in the spin-2 case, while in the spin-1 case there is one real equation of

motion (3.9).) This can be understood by a simple counting. For example, for LLMN , we

begin with 3 · 4 · 5/3! = 10 components, but by using the 3 · 4/2!− 1 = 5 gauge parameters,

we can set 5 components to zero, so there are 5 constraint equations (the analogs of (3.47)-

(3.49)). The remaining 5 components of LLMN have 5 equations of motion, but these

must be all redundant since we already have the 5 constraint equations and the constraint

equations are lower order in derivatives. Therefore we have only constraints and no real

equations of motion. However, this does not mean that the equations are trivial. As we have

seen in the spin-2 case, the Chern-Simons term can make the constraint equations depend

on q2, thus effectively introducing propagation. Note, however, that the detailed form of the

propagating modes did not play a significant role in reproducing the correlation functions.

Next, the structure of the ‘Chern-Simons’ term is the following. The (quadratic part

of) ‘Chern-Simons’ term should contain the structure ǫL ∂ L, i.e., one ǫ tensor (3 upper

indices), two L fields (2k lower indices) with one derivative in between (1 lower indices).

But there are still 2k− 2 lower indices yet to be contracted. Furthermore, it needs to have

the right scaling property under xM → λxM to be consistent with the AdS3 isometry. Since

the kinetic term has the form
∫
d3x

√
g (g−1)k+1∇L∇L where g−1 denote the inverse metric,

L must scale as L → λ−kL. Thus, the object that gets contracted with the 2k − 2 lower

indices in the Chern-Simons term must scale as λ2k−2. The only way to do this is to have
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additional 2k−2 derivatives and 2k−2 inverse metrics. Hence, schematically, (the quadratic

part of) the ‘Chern-Simons’ term has the form
∫
d3x ǫL (g−1)2k−2∇2k−1L where the indices

are contracted in various ways such that the whole thing becomes gauge invariant (up to a

surface term) under the gauge transformation mentioned above. Note that this form agrees

with what we have explicitly written down for the k = 1 and k = 2 cases.

Finally, we expect that, like in the k = 1, 2 cases, once we fix the coefficients of the

‘Chern-Simons’ terms by matching the divergences of the current-current correlators, the

whole correlators (in the conformal limit) should be automatically reproduced regardless

of the coefficients of the ‘kinetic’ terms. However, there is a notable difference between the

k = 1 case and all k ≥ 2 cases. The k = 1 Chern-Simons is special because it contains no

metric, so it is insensitive to a deformation of the bulk geometry. This was the essential

reason why the k = 1 correlators in the conformal limit is actually exact to all orders in

Λ. On the other hand, since all k ≥ 2 Chern-Simons terms depend on the metric, so the

k ≥ 2 correlators should receive corrections depending on Λ, which is in accord with the

2d results.

3.2.4 The U(1)A-charged sector

This sector only contains one operator X. Since X is a dimension-one operator, the

corresponding bulk scalar field X has mass-squared −1. Therefore, the quadratic part

of the scalar-sector action (with the short-distance cutoff ǫ) is given by

SX =

∫
d2x

∫ ∞

ǫ
dz

[
1

z
(∂MX †)∂MX +

1

z3
X †X

]
. (3.62)

For 2d momentum q, the equation of motion from this action reads

z2X ′′ − zX ′ − (Q2z2 − 1)X = 0 , (3.63)

where Q2 ≡ −q2. The solution satisfying the boundary condition limz→∞X → 0 is

X (q, z) = Z
−1/2
X

z K0(Qz)

ǫK0(Qǫ)
JX(q) , (3.64)

where JX(q, ǫ) is the (renormalized) source for X(q), with the wavefunction renormaliza-

tion ZX .

Since we are in the conformal limit (i.e. Λ → 0 and mq → 0), it is diagrammatically

straightforward to compute 〈X†X〉 in the 2d side, which gives

〈X†X〉(q) =
iNc

π
logQ+ · · · , (3.65)

where the · · · refers to a scheme-dependent local piece. On the other hand, the effective

action obtained by plugging (3.64) into (3.62) yields

〈X†X〉(q) −→ − i

ǫ2ZX

1

logQǫ
+ · · · , (3.66)

where · · · denotes terms which are local or higher-order in ǫ. To subtract the ǫ depen-

dence, we have to introduce a fixed (but arbitrary) renormalization scale µ ≪ ǫ−1. (This
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dependence on µ precisely reflects the scheme dependence of the finite term in the 2d side.)

Then, we rewrite logQǫ as logQǫ = log µǫ+ log(Q/µ), and the above expression becomes

〈X†X〉(q) −→ i

ǫ2ZX

log(Q/µ)

(log µǫ)2
+ · · · . (3.67)

Hence, Z
−1/2
X must be proportional to ǫ log µǫ in order for the ǫ → 0 limit to be finite.

Matching the coefficients of logQ, we determine the wavefunction renormalization:

Z
−1/2
X =

√
Nc

π
ǫ log µǫ . (3.68)

Thus we have exactly reproduced 〈X†X〉 in the conformal limit.

3.3 Conformal symmetry breaking at O(Λ)

As we pointed out in section 2.3.2, the only nonzero correlators at O(Λ) are 〈XLµ1···µk
〉 and

〈XRµ1···µk
〉 (and their Hermitian conjugates). This means that at O(Λ), the only effect of

the breaking of conformal invariance is the ‘apparent’ chiral symmetry breaking discussed

in section 2.4. The corresponding 3d analyses are quite analytically tractable because the

geometry can be still taken to be AdS3; note that a deviation from AdS3 would lead to

〈T µ
µ 〉 6= 0 for the 2d stress-tensor, but from dimensional analysis this must be proportional

to Λ2. Therefore, for O(Λ) analyses, there is no need to worry about backreaction to the

geometry. Therefore, we begin with the O(Λ) case (which includes some exact results, as

we advertised earlier), then move on to analyses at O(Λ2).

First, notice that the only source of O(Λ) effects is X (see section 2.3.2). Hence, in

the 3d side, we must be able to describe all O(Λ) effects in terms of 〈X 〉. In particular, as

we already pointed out, the geometry can be taken to be just AdS3.

For definiteness and simplicity, let us just focus on the PLµ and PRµ correlators, (2.33)

and (2.34). P also mixes with Lµ1···µk
and Rµ1···µk

with k = 3, 5, · · · , but this could affect

〈PLµ〉 and 〈PRµ〉 only at O(Λ2) or higher. Actually, since (2.33) and (2.34) are exact,

there are no higher-order corrections to them; we will see below from a 3d viewpoint why

they are exact.

As we discussed in section 2.4, the O(Λ) effects in the correlators (2.33) and (2.34)

describe (apparent) chiral symmetry breaking. Therefore, the corresponding 3d physics

must be spontaneous breaking of U(1)A by nonzero 〈X 〉, giving a mass to AM = LM −RM

(but not to VM = LM + RM ). We parameterize X as

X =

(
〈X 〉 +

H√
2

)
ei

eP , (3.69)

where H(x, z) is a real scalar field with 〈H〉 = 0, while P̃ is a Goldstone field which

shifts as P̃ → P̃ − α under the U(1)A gauge transformation AM → AM + ∂Mα. Since

X = (S+ iP )/
√

2, the real scalar field P that corresponds to the 2d operator P is given by

P̃ =
P√
2〈X 〉

. (3.70)
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Now, since H and P do not couple to each other at the quadratic order, we can ignore H
for the purpose of studying 〈PLµ〉 and 〈PRµ〉. Then, the U(1)A gauge invariance tells us

exactly how the actions (3.5) and (3.62) must be combined:

SL,R,P = SL,R +

∫
d2x

∫ ∞

ǫ
dz

〈X 〉2
z

(∂M P̃ + AM)(∂M P̃ + AM ) . (3.71)

What is 〈X 〉? Note that if the geometry were exactly AdS3, theX equation of motion (3.63)

would tell us that 〈X 〉 ∝ Λz. The mass of AM would then be ∝ Λz, which would not be

AdS3 invariant. Hence the geometry cannot be exactly AdS3, but, as we already mentioned,

the deviation from AdS3 is an O(Λ2) effect, so it is consistent to say that background is

AdS3 with 〈X 〉 ∝ Λz as long as we are only concerning O(Λ) effects. Therefore, we

parameterize 〈X 〉 as

〈X 〉 = κΛz +O(Λ2z2) , (3.72)

and the determination of κ does not get affected by higher order effects.

We stick with the gauge choice L3 = R3 = 0, but now the constraint (3.8) and its R
counterpart are modified:

1

g2
3

zL′
‖ +

Nc

2π
L⊥ − 2〈X 〉2

z
P̃ ′ = 0 ,

1

g2
3

zR′
‖ −

Nc

2π
R⊥ +

2〈X 〉2
z

P̃ ′ = 0 . (3.73)

Then, the analog of the effective action (3.11) is given by

SL,R,P = [r.h.s. of (3.11)] +

∫
d2q

(2π)2
〈X 〉2
ǫ

[
P̃(−q) P̃ ′(q) +

1

Q2
A‖(−q) P̃ ′(q)

]

z=ǫ

. (3.74)

Now, note that the A‖P̃ ′ term above gives an O(Λ) contribution to the PL and PR

correlators. More explicitly, from (3.68), (3.70), and (3.72), we get

〈X 〉2
ǫ

P̃ ′(q, ǫ) = κΛ

√
Nc

2π

log µǫ

logQǫ
JP (q) +O(ǫ)

−→ κΛ

√
Nc

2π
JP (q) , (3.75)

where JP (q) is the (renormalized) source for P (q). Note that this result is actually exact,

because corrections which are higher order in Λ are necessarily accompanied by higher

powers of z, hence will vanish when the ǫ → 0 limit is taken. This formula together

with (3.70)) tells us that the A‖P̃ ′ term in (3.74) are O(Λ), while the P̃P̃ ′ term is still

purely O(Λ0), which is consistent with our observation that the corrections to the PP

correlator begins at O(Λ2).

There are other places where O(Λ) contributions appear; It is no longer true that in

the r.h.s. of (3.11) we can replace ǫL′
⊥ and ǫR′

⊥ with −νL⊥ and −νR⊥. Now, L′
⊥ and R′

⊥
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contain an O(Λ) piece. To see this, we must look at the equation of motion for L⊥ and R⊥:

1

g2
3

[
z(zL′

⊥)′ −Q2z2L⊥
]
+
Nc

2π
zL′

‖ − 2〈X 〉2
(
L⊥ −R⊥

)
= 0 ,

1

g2
3

[
z(zR′

⊥)′ −Q2z2R⊥
]
− Nc

2π
zR′

‖ + 2〈X 〉2
(
L⊥ −R⊥

)
= 0 . (3.76)

Combining these with (3.73) and throwing away terms O(Λ2) or higher, we get

1

g2
3

[
z(zL′

⊥)′ − (Q2z2 + ν2)L⊥
]

= −2ν〈X 〉2
z

P̃ ′ , (3.77)

where ν = g2
3Nc/(2π) as before, and the corresponding equation for R⊥ is identical. Now,

we write L⊥ as L(0)
⊥ +L(1)

⊥ where L(0)
⊥ is the conformal solution (3.10) and L(1)

⊥ is the O(Λ)

perturbation. Then, the perturbation satisfies

z(zL(1)′
⊥ )′ − (Q2z2 + ν2)L(1)

⊥ = −2νg2
3〈X 〉2
z

P̃(0)′

= −νg2
3κΛ

√
2Nc

π
JP (q) +O(z) , (3.78)

where the ‘source term’ approaches a constant for small z, as seen in the last line above.

Then, the small-z behavior of the perturbation is

L(1)
⊥ = −g

2
3κΛ

ν

√
2Nc

π
JP (q)

( ǫ
z

)ν
+ · · · , (3.79)

where the · · · refers to subleading terms for small z. When we re-evaluate L′⊥ in (3.11) by

taking L(1)
⊥ into account, we get a new term proportional to L⊥P, and repeating these steps

for R⊥ gives the same coefficients for R⊥P. Putting all the pieces together, (3.74) becomes

SL,R,P = [r.h.s. of (3.12)] +

∫
d2q

(2π)2
〈X 〉2
ǫ

[
P̃(−q) P̃ ′(q)

]

z=ǫ

+iκΛ

√
Nc

2π

∫
d2q

(2π)2
1

Q2

{
qL
µLµ(−q) − qR

µ Rµ(−q)
}
JP (q) . (3.80)

This exactly reproduces the 2d results (2.33) and (2.34) if we choose

κ =

√
2πNc

3
. (3.81)

Looking back at the above calculation, we notice that the results are completely de-

termined by the leading small-z behavior of 〈X 〉2P̃ ′. Since terms higher-order in Λ always

come with higher-powers of z, the leading small-z behavior of 〈X 〉2P̃ ′ calculated above will

not get corrected. Therefore, the formulas (2.33) and (2.34) are exact in the dual theory,

as they are in 2d!
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4. Mapping the 2d theory to AdS3

Let us summarize what we have done so far. We have constructed the corresponding

quadratic action for a certain bulk fields. In the quadratic action, the complexity of con-

formal symmetry breaking effects are encoded in mixings of the bulk fields. In principle,

the mixings can be systematically identified by continuing what we did in section 3 to

include other fields, order-by-order in Λz. However, this way of getting the 3d action — by

computing correlators and comparing them with the 2d results — seems quite ‘indirect’. In

other words, on the one hand we have the ’t Hooft equation, which encodes all information

about two-point correlators, while on the other hand we are interested in the form of the

(linearized) equations of motion for the bulk fields, and in particular, the mixings. How-

ever, to map one side to the other, we had to solve the equations and match the solutions,

which is an extra step. It is much more desirable to have a direct map from the ’t Hooft

equation to the equations of motion for the bulk fields.

To this goal, we again follow our general philosophy and begin with the conformal limit

of the ’t Hooft equation, and try to see if we can directly map it to an equation of motion

in AdS3. But which equation of motion? While the ’t Hooft equation is a single equation,

there are an infinite number of equations of motion in the 3d side because there are infinite

number of fields. To answer this question, recall that in the conformal limit the SS and PP

correlators are the only ones that know about the nontrivial dynamics of the full model.

The correlators among U(1)A-neutral currents (such as Lµ and Rµν) all have just a 1/q2

pole without any other non-analytic structure. In other words, in taking the Λ → 0 limit,

all the poles 1/(q2 − m2
n) have collapsed down to 1/q2. This pole has completely lost

information about dynamics, since as seen from the 3d perspective, the residue of the pole

is completely determined by the coefficient of the Chern-Simons term, i.e. by the anomalies.

The scalar S or pseudo-scalar P two-point functions, on the other hand, have logarithmic

behavior at high energies. These are obtained by summing over all the mesons, where the

sum goes as
∑

n 1/(q2 − Λ2n) ∼ log(−q2) (recall that m2
n ≃ π2Λ2n for n ≫ 1.) That is,

the contributions from the highly excited states are crucial for obtaining the logarithmic

behavior expected from the asymptotic freedom. We therefore cannot simply take Λ to

zero and collapse all mn to zero, but rather we need to take Λ → 0 and n → ∞ with

m2
n ∼ π2Λ2n fixed. We thus expect that if we take this scale invariant limit of the ’t Hooft

equation for the parton wave function φn(x), it should be related to the AdS equation of

motion for the fields dual to operators S and P .

This limit, which zooms in to the large-n mesons and makes the scale invariance of the

’t Hooft equation manifest, was first derived in [9] in the context of analyzing the behavior

of φn(x) near the ‘turning points’ in the semi-classical approximation. First, let us rescale

the x-variable as x→ Λ2x (followed by the redefinition of φn as φ(Λ2x) → φn(x)). The ’t

Hooft equation (2.2) then reads

m̃2
q − 1

x(1 − Λ2x)
φn(x) − P̂

∫ 1/Λ2

0

φn(y)

(x− y)2
dy = m2

n φn(x) , (4.1)

where m̃q ≡ mq/Λ. We now take the limit Λ → 0 and n → ∞ with m2
n ≡ m2 fixed (and
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also mq → 0 with m̃q fixed) to obtain

(T̂ ∗φ)(m2x) ≡
m̃2

q − 1

x
φ(m2x) − P̂

∫ ∞

0

φ(m2y)

(x− y)2
dy = m2φ(m2x) , (4.2)

where we have written limn→∞ φn(x) as φ(m2x) to make it explicit that φ only depends

on the combination m2x. Now it is obvious that the equation has an invariance under

x → λx,m2 → m2/λ with any positive constant λ. (Note that m2 is now a continuous

eigenvalue.) Hence, in principle the equation (4.2) has all the necessary ingredients to

describe the conformal limit of the ’t Hooft model, as we have discussed above. However,

the full conformal symmetry, which is more than just scale invariance, is not manifest

in (4.2), although it should be so secretly.

To reveal the hidden conformal invariance of (4.2), note the following identity:

∫ ∞

0

dx

x
sin

(
πz2

4x

)
cos

(
m2x

π

)
=
π

2
J0(mz) . (4.3)

Recalling the approximate form of the ’t Hooft wavefunction (2.7), this suggests that we

should consider the following transform of the φ(m2x)wave function:

φ̃(z) =

∫ ∞

0
dx ∂zφ

(
π2z2

4x

)
φ(m2x) . (4.4)

Then, the above identity says that φ̃(z) ∝ zJ0(mz), which is of course a solution of the

equation of motion (3.63) for the bulk scalar X ! Being purely J0 without a Y0 component,

it even satisfies the right boundary condition (limz→0 φ̃(z) → 0) to be a KK mode.10

Our goal is, however, to map equations to equations, rather than solutions to solutions.

Thus, let us check that the above transform maps the scale-invariant limit of the ’t Hooft

equation (4.2) to a bulk equation of motion in AdS3. First, notice that from (4.2), one can

show that the operator T̂ has the property that

∫ ∞

0
dx f

(
u2

x

)
(T̂ ∗g)(m2x) =

∫ ∞

0
dx g

(
m2

x

)
(T̂ ∗f)(u2x) (4.5)

for arbitrary functions f and g. Applying this to the case f(u2/x) = φ(π2z2/4x), we obtain

∫ ∞

0
dx ∂zφ

(
π2z2

4x

)
(T̂ ∗g)(m2x) =

∫ ∞

0

dy

y2
∂z

[
π2z2

4
φ

(
π2z2

4y

)]
g(m2y) , (4.6)

for any g(m2x). In the limit that m̃q → 0, we have ∂zφ(π2z2

4x ) ≃ − πz√
2x

sin(πz2/4x), and thus

1

y2
∂z

(
π2z2

4
φ

)
= −

[
z∂z(z

−1∂z) +
1

z2

]
∂zφ . (4.7)

10Strictly speaking, we do not have ‘KK modes’ in the exact AdS3 limit, but one should imagine that

the geometry deviates from AdS3 at large z corresponding to the breaking of conformal symmetry in the

2d side. Then our discussions here are valid for the small-z behavior of eφ(z).
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Finally, letting g = φ, we find that φ̃(z) obeys the equation

−
[
z∂z(z

−1∂z) +
1

z2

]
φ̃(z) = m2φ̃(z) , (4.8)

which is the appropriate wave equation in AdS3 for a KK-mode of a scalar field dual to a

dimension one operator, i.e. X. Since it is mapped to an AdS3 invariant equation, the scale-

invariant ’t Hooft equation (4.2) is indeed fully conformally invariant. The transform (4.4)

also shows an explicit connection between parton-x and the radial coordinate z of AdS3.

In addition, note that the transform provides an explicit check of the AdS/CFT pre-

scription. Namely, consider the following kernel

G0(q
2, x) ≡ mq

∑

n=0,2,4,···

φn(x)

q2 −m2
n

∫ 1

0

dy

y
φn(y) . (4.9)

(Here T̂ refers to the exact ’t Hooft operator rather than the scale-invariant one (4.2).)

The point of this kernel is that it satisfies

iNc

π

∫ 1

0
dxG0(q

2, x) (q2 − T̂∗)G0(q
2, x) = 〈P P 〉(q) . (4.10)

What is the 3d ‘dual’ of this kernel? Let us use our transform (4.4) to find it. First, let us

take the scale-invariant limit, in which G0 becomes

G0(q
2, x) −→ mq

∫ ∞

0

dm2

2π2

φ(m2x)

q2 −m2

∫ ∞

0

dy

y
φ(m2y) , (4.11)

where the factor 2π2 comes from the fact that the modes n = 0, 2, 4, · · · have spacing

2π2Λ2. Now, following our transform, let us define Ḡ0(q
2, z) via

G0(q
2, x) =

∫
dz

z

[
∂zφ

(
π2z2

4x

)]
Ḡ0(q

2, z) , (4.12)

and compute the left-hand side of (4.10) in terms of Ḡ0. It has two pieces, the q2 piece

and the T̂ piece. First, the q2 piece becomes
∫
dxG0(q

2, x) q2G0(q
2, x)

=

∫
dz

z

dz′

z′
Ḡ0(q

2, z) q2Ḡ0(q
2, z′)

∫
dx

[
∂zφ

(
π2z2

4x

)][
∂z′φ

(
π2z′2

4x

)]

= π2

∫
dzdz′ Ḡ0(q

2, z) q2Ḡ0(q
2, z′)

∫
dx

2x2
[sin(πz2/4x) sin(πz′2/4x) +O(m̃q)]

= π2

∫
dz

2z
Ḡ0(q

2, z) q2Ḡ0(q
2, z) +O(m̃q) , (4.13)

where we have used
∫∞
0 dx sin[ax] sin[bx] = π

2 δ(a− b) in the last step. On the other hand,

since φ(π2z2

4x ) → 0 as z → 0, G0(q
2, x) may also be written as,

G0(q
2, x) = −

∫
dz φ

(
π2z2

4x

)
∂z

(
Ḡ0(q

2, z)

z

)
, (4.14)
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and so the T̂ piece becomes

∫
dxG0(q

2, x) T̂ ∗G0(q
2, x)

= π2

∫
dz dz′

4
∂z

(
Ḡ0(q

2, z)

z

)
z′2 ∂z′

(
Ḡ0(q

2, z′)
z′

)∫
dx

x2
φ

(
π2z2

4x

)
φ

(
π2z′2

4x

)

= π2

∫
dz

z

2
∂z

(
Ḡ0(q

2, z)

z

)
∂z

(
Ḡ0(q

2, z)

z

)
(4.15)

= π2

∫
dz

2z

(
[∂zḠ0(q

2, z)] [∂zḠ0(q
2, z)] − 1

z2
Ḡ0(q

2, z) Ḡ(q2, z)

)
+
π2

2ǫ2
Ḡ0(q

2, ǫ) Ḡ0(q
2, ǫ) .

Thus, combining (4.13) and (4.15), we get

〈P P 〉(q) = −i δ2SAdS

δJP (−q) δJP (q)

=
iNc

π

∫
dxG0(q

2, x) (q2 − T̂∗)G0(q
2, x)

= iπNc

∫
dz

2z

(
Ḡ0(q

2, z) q2Ḡ0(q
2, z) − [∂zḠ0(q

2, z)]2 +
1

z2
[Ḡ0(q

2, z)]2
)

+
iπNc

2ǫ2
[Ḡ0(q

2, ǫ)]2 . (4.16)

This indeed implies that Ḡ0 is the bulk-to-boundary propagator for the bulk field X with

the bulk action precisely equal to (3.62), with the additional boundary term ∼ 1
ǫ2X †X .

The boundary term is just an indication that Ḡ0(−Q2, z) ∼ zK0(Qz) (i.e. without being

divided by ǫK0(Qǫ)), which is just an alternative convention for the normalization of the

field from that of (3.64). Therefore, we have found that the transform (4.4) directly maps

the bulk-to-boundary propagator Ḡ to the Green’s function G of the ’t Hooft equation!

5. Towards full implementation of conformal symmetry breaking

Thus far we have discussed the 3d dual of the ’t Hooft model near its conformal limit.

What can we expect the dual of the full confining theory to look like? First, We have

seen that 3d equations have essentially followed from the ’t Hooft equation. On the other

hand, the simplest basis of 3d fields consists of fields dual to primary operators. Thus, it

is natural to express the ’t Hooft equation (2.2) in the basis of primary operators, which

is spanned by the Legendre Polynomials as we have seen in section 2.3. In this basis, the

’t Hooft operator T̂ becomes

T̂kk′ = (2k′ − 1)

∫ 1

0
dx

∫ 1

0
dy Pk−1(2x− 1)

[
m2

q − Λ2

x(1 − x)
δ(x − y) − P̂

Λ2

(x− y)2

]
Pk′−1(2y − 1).

(5.1)

Then, the ’t Hooft equation (2.2) becomes a matrix equation

∑

k′

T̂kk′ Mk′n = m2
nMkn , (5.2)
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where Mk,n are the moments defined in (2.16). This is not the only way to discretize the

’t Hooft equation, but this is the most natural one suggested by AdS/CFT.

To extract information about how bulk fields mix in the 3d action, we would like to

have kernels of the ’t Hooft equation which get mapped to ‘bulk-to-boundary’ propagators.

We have seen this explicitly for 〈PP 〉 in section 4. So, generalizing the kernel G0 to all

other primary operators, let us define

Gk(q
2, x) ≡

∑

n

φn(x)

q2 −m2
n

∫ 1

0
dy Pk−1(2y − 1)φn(y) =

∑

n

φn(x)

q2 −m2
n

Mk,n . (5.3)

Like G0, this satisfies

iNc q
2k
+

π

∫ 1

0
dxGk(q2, x) (q2 − T̂∗)Gk(q2, x) = 〈Lk+ Lk+〉(q) . (5.4)

In the basis of primary operators, the ’t Hooft equation implies

∑

k′

(√
2k′ − 1

2k − 1
q2δkk′ − T̂kk′

)
Gk′(q2, x) = Pk−1(2x− 1) . (5.5)

Therefore, the matrix T̂kk′ can be thought of as containing the information regarding the

mixing of 3d fields dual to primary operators, following conformal symmetry breaking.

(Note that the ’t Hooft operator T̂kk′ is proportional to Λ2 in the mq → 0 limit.)

The hope is then that one could transform the above equations in x into a set of

coupled 3d equations of motion. Indeed, one can write down an abstract formula for the

transform for the full theory

F (x, z) =
∑

n

φn(x)φ̃n(z), (5.6)

where φ̃n(z) are the bulk KK-modes (i.e. the normalizable solutions to the set of coupled

3d equations). The resulting 3d equations of motion would encode all information about

conformal symmetry breaking, including all possible mixings of bulk fields. In addition,

they should tell us how the Regge-like spectrum m2
n ∝ n could arise as a consequence of

the mixings, and ultimately at least some qualitative features of the backgrounds causing

all the mixings. Some hint of the effective result of the mixing can already be seen from

an approximate form of eq. (5.6) valid for large n

F (x, z) ∼
∑

n

√
2 cos[πnΛ2x] zLn

(
π2Λ2z2

4

)
, (5.7)

where Ln are the Laguerre polynomials. This form follows from the fact that the Laguerre

polynomials provide the right spectrum at large n, and under the previously used conformal

limit, Λ → 0 and n → ∞ with m2 ∼ π2Λ2n fixed, Ln(m2z2

4n ) → J0(mz). Transforming the

’t Hooft equation for a meson of sufficiently large n, by this F (x, z), will therefore yield the

equation of motion resulting from a background similar to [6]. In other words, the ‘dilaton’

profile seems to appear as an effective background which approximates the effect of field

mixing for the highly excited modes.
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6. Conclusion

In this paper we have taken some steps towards describing the 3d dual to 2d QCD at

large Nc. In the conformal limit we have proposed the form of the quadratic 3d action

for the duals of primary operators. We have also included the leading effects of conformal

symmetry breaking. We also proposed a transform (in the conformal limit) which relates

the ’t Hooft wavefunctions to the bulk modes, therefore enabling us to map the ’t Hooft

equation to the equation of motion for a bulk scalar. Some conjectured features of the full

dual and the transform at the quadratic level were provided, and we hope to report on the

particulars in a future paper.

There are several intriguing open questions. Though we have only described the

quadratic part of the action, one may use the transform to derive the cubic terms as

well at leading order in Nc (at least in the conformal limit). Indeed, at large Nc, on the

2d side there are expressions for the three-point correlators in terms of the parton wave-

functions [8]. These may be transformed into bulk cubic vertices in the AdS region of

the background. It would be interesting to see how these compare to known actions from

supersymmetric duals. One could also study deep inelastic scattering at leading order in

Nc and compare with [16]. Finally, it would be interesting to study the effect of quark

masses on the 3d dual, perhaps also taking the heavy quark limit.

Acknowledgments
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A. The primary operators

In this appendix, we will compile a list of all primary single trace operators in the ’t Hooft

model, except for those which vanish by the equations of motion in the conformal limit.

By definition primary operators are operators that transform covariantly under confor-

mal transformations, just like tensor operators are ones that transform covariantly under

Lorentz transformations. Since the Lorentz group is a subgroup of the conformal group, all

primary operators are Lorentz tensors (but the converse is not true). In 1 + 1 dimensions

tensor components can be handled most efficiently in terms of the light-cone coordinates

x± = (x0±x1)/
√

2, where the metric is simply ds2 = 2dx+dx−. Aside from parity x+ ↔ x−

and time-reversal x+ ↔ −x−, a Lorentz transformation is given by x± −→ e±λx± with a
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real parameter λ (i.e. the ‘rapidity’). Then, ∂± = (∂0 ∓ ∂1)/
√

2 transform as ∂± → e∓λ∂±,

while left-moving and right-moving spinors ψ+ and ψ− transform as a ‘square-root’ of ∂+

and ∂−, namely, as ψ± → e∓λ/2ψ±. Note that the standard kinetic terms for ψ+ and ψ−,

∫
dx+dx−

√
2ψ†

+∂−ψ+ ,

∫
dx+dx−

√
2ψ†

−∂+ψ− , (A.1)

are manifestly invariant under these transformations.

However, (A.1) are clearly invariant under more general transformations, or confor-

mal transformations,

x+ −→ x′+ = f+(x+) , x− −→ x′− = f−(x−) , (A.2)

where f± are two independent, arbitrary functions, provided that we also let ψ± trans-

form as

ψ±(x) −→ ψ′
±(x′) ≡

∣∣∣∣
df±

dx±

∣∣∣∣
−1/2

ψ±(x) . (A.3)

This symmetry group is enormous, much larger than the isometry group of AdS3, which

only has six generators. For the purpose of AdS3/CFT2, therefore, we are only interested

in special conformal transformations, a subset of the above transformations, with globally

defined generators. For infinitesimal transformations, this means we should restrict f± to

just quadratic functions,

f+(x+) = x+ + α+ + (δ + λ)x+ + ǫ+(x+)2 ,

f−(x−) = x− + α− + (δ − λ)x− + ǫ−(x−)2 , (A.4)

which depend on six (infinitesimal) parameters α±, λ, δ, and ǫ±. Clearly, α± and λ just

parameterize Poincaré transformations. Among the three ‘new’ parameters, δ induces a

dilation x± −→ (1 + δ)x±, while ǫ± induce a conformal boost x± −→ (1 + ǫ±x±)x±.

Now we are ready to write down the general transformation law for any primary

operators. First, let us define our notation. Say, we have an operator with n+ lower +

indices and n− lower − indices, counting spinorial ± as half. (For example, (n+, n−) =

(1, 0) for ∂+, while (n+, n−) = (3/2, 1/2) for ψ−∂+ψ+.) We then define the spin s of

the operator by s = n+ − n−. Our convention for scaling dimensions is such that a

∂ has scaling dimension one under the dilation. Now, if an operator O∆,s with scaling

dimension ∆ and spin s is a primary operator, then it should transform in the same way

as (ψ+)∆+s(ψ−)∆−s. Namely,

O∆,s(x) −→ O′
∆,s(x

′) ≡
∣∣∣∣
df+

dx+

∣∣∣∣
−∆+s

2
∣∣∣∣
df−

dx−

∣∣∣∣
−∆−s

2

O∆,s(x) , (A.5)

where f± have the form (A.4). Hereafter we will refer to this simply as ‘conformal trans-

formation’ without ‘special’.
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A.1 U(1)A-neutral primary operators

These operators are further divided into two classes, the L type and the R type. The

analysis of the R type goes exactly parallel to that of the L type, so here we will just

discuss the operators of the L type, which are a linear combination of the operators of

the form (D1ψ
†
+)(D2ψ+) where D1,2 are some powers of ∂+. It cannot contain ∂−, since it

would then vanish by the equation of motion ∂−ψ+ = 0 in the conformal limit.

Obviously, the lowest-dimensional L type operator is ψ†
+ψ+, which has ∆ = 1 and

s = 1. This is of course the + component of the U(1)L Noether current. The next

lowest one must be a linear combination of ψ†
+∂+ψ+ and (∂+ψ

†
+)ψ+. Under a conformal

transformation, they transform as

ψ†
+∂+ψ+ −→ J2

+ ψ
†
+∂+ψ+ + J

3/2
+ (∂+J

1/2
+ )ψ†

+ψ+ ,

(∂+ψ
†
+)ψ+ −→ J2

+ (∂+ψ
†
+)ψ+ + J

3/2
+ (∂+J

1/2
+ )ψ†

+ψ+ , (A.6)

where J+ ≡ |df+/dx+|−1. Note that if we subtract one of these from the other, it agrees

with the form (A.5). So the primary operator must be the following linear combination:

ψ†
+∂+ψ+ − (∂+ψ

†
+)ψ+ , (A.7)

which has ∆ = 2 and s = 2. This is nothing but the ++ component of the energy-

momentum tensor. (For ∆ = 2 and s = 0, the combination ψ†
+∂−ψ+ − (∂−ψ

†
+)ψ+ does

transform as a primary operator, but, as we mentioned already, this vanishes by the equa-

tion of motion in the conformal limit.)

Proceeding to the next level, we have to find an appropriate linear combination of

ψ†
+∂

2
+ψ+, (∂+ψ

†
+)∂+ψ+, and (∂2

+ψ
†
+)ψ+. Repeating the above exercise, we find that again

there is a unique combination which obeys the law (A.5):

ψ†
+∂

2
+ψ+ − 4(∂+ψ

†
+)∂+ψ+ + (∂2

+ψ
†
+)ψ+ , (A.8)

which has ∆ = s = 3. At the next level, one finds that the coefficients of ψ†
+∂

3
+ψ+,

(∂+ψ
†
+)∂2

+ψ+, (∂2
+ψ

†
+)∂+ψ+, (∂3

+ψ
†
+)ψ+ are 1, −9, 9, −1, respectively. Thus, the coeffi-

cients are given by the square of the binomial coefficients with alternating signs. Therefore,

the L-type primary operator with ∆ = s = k is given by

Lk+ ≡ ik−1
√

2
k−1∑

m=0

(k−1Cm)2 (−1)m (∂m
+ψ

†
+) ∂k−1−m

+ ψ+

=
k−1∑

m=0

(k−1Cm)2 [(−i∂+)mψ]γ+ (i∂+)k−1−mψ , (A.9)

where nCm ≡ n!/[m! (n −m)!], and γ+ = (γ0 + γ1)/
√

2.

A.2 U(1)A-charged primary operators

Clearly, the lowest-dimensional primary operators in this class are ψ†
+ψ− and its Hermitian

conjugate. With one ∂+, the only combination that does not vanish by the equations of
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motion is (∂+ψ
†
+)ψ− (and its Hermitian conjugate). However, this does not transform

as (A.5) because it gives an extra term containing ∂+J+. Since this is the only operator

with ∆ = 2 and s = 1 that does not vanish by the equations of motion, there is no way

to cancel this extra term. (Actually, even if we forget about the equations of motion,

ψ†
+∂+ψ− still would not help us since it would only give ∂+J− instead of ∂+J+.) This

problem persists for (∂p
+ψ

†
+)∂q

−ψ− with any p, q. Thus, we conclude that ψ†
+ψ− and its

Hermitian conjugate are the only (non-vanishing) primary operators in this class.

B. 2D calculation of 2-point correlators

In this appendix, we derive the formulae (2.5), (2.6), and (2.15). We essentially follow

the method in [8] and generalize it to include all the primary operators. Throughout this

appendix, we choose the units where Λ = 1.

B.1 The Feynman rules

The Feynman rules in the ’t Hooft double-line notation are:

• The gluon propagator:

=
π

Nc

(
δa
c δ

d
b − 1

Nc
δa
b δ

d
c

)
i

k2
−

, |k−| > λ , (B.1)

where λ is an IR cutoff, and a, b, · · · label color. The second term in the bracket is

subleading in 1/Nc expansion, and hence not used in this paper.

• The quark propagator:

=
i(γ+p− + γ−p+ +mq)

2p+p− −m2
q + iε

. (B.2)

• The quark-quark-gluon vertex:

= −iγ− .

(B.3)

We will choose the light-cone gauge A− = 0 in the following calculations. The advantage

of this gauge is that all gluon self-couplings vanish identically.

B.2 The quark self-energy

At the leading order in the 1/Nc expansion, only the quark propagator gets quantum

corrections; the gluon propagator and the quark-quark-gluon vertices remain unchanged.

Since the 1PI quark self-energy is proportional to γ− in the A− = 0 gauge, we define

(The 1PI quark self-energy) ≡ −iΣ(p)γ− . (B.4)
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Figure 1: The quark self-energy at the leading in 1/Nc.

Then, the exact full quark propagator can be written as

i[p−γ+ + (p+ − Σ(p)) γ− +mq]

2p− (p+ − Σ(p)) −m2
q + iε

. (B.5)

Now, at the leading order in 1/Nc, only the “rainbow” diagrams contribute (see figure 1).

Also, by inspecting the diagrams, we see that Σ(p) only depends on p−. Therefore,

we have

−iΣ(p−) =
1

4π

∫
dk+dk−

1

[(k− − p−)2]λ

1

k+ − Σ(k−) − m2
q

2k−
+ iε sgn(k−)

(B.6)

where sgn(k−) ≡ k−/|k−| and the notation [· · · ]λ is meant to remind us of the IR cutoff on

the gluon propagator (B.1). The k+ integral here is log divergent. We choose to remove

the divergence by imposing a symmetric cutoff on k+ (i.e. |k+| ≤ Λ) after shifting k+ as

k+ −→ k++Σ(k−)+m2
q/2k− to eliminate the terms −Σ(k−)−m2

q/2k− in the denominator.

Having done so, we get

Σ(p−) =
sgn(p−)

2λ
− 1

2p−
. (B.7)

B.3 The quark-antiquark ‘scattering’ matrix

Consider the diagrams in figure 2. Here, we are not trying to calculate a scattering ampli-

tude (quarks can never be put on-shell anyway) — rather, since such diagrams will often

appear as part of larger diagrams, it is convenient to evaluate them once and for all.

At the leading order in 1/Nc, the only way for the quark and antiquark to exchange

gluons is in the “ladder” fashion where all gluons just go vertically connecting the quark

and antiquark, and no two gluons ever cross. All diagrams of this type have a γ− for each

quark line, and one color flows in along the upper-left line and flows out along the lower-left

line, and another color, independent of the first one, flows in along the lower-right line and

flows out along the upper-right line.

Let T (p, p′; q) be the sum of all such ladder diagrams. (The color indices, the flavor

indices, and the factor of γ− ⊗ γ− are suppressed.) Then, we have

T (p, p′; q) = − iπ

Nc

1[
(p− − p′−)2

]
λ

+
i

4π

∫
dk−

1

[(p− − k−)2]λ
Φ(k−, p

′; q) , (B.8)

where

Φ(p−, p
′; q) ≡

∫
dp+ S(p)S(p − q)T (p, p′; q) , (B.9)
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Figure 2: The quark-antiquark ‘scattering’ at the leading order in 1/Nc. A gray circle represents

the full quark propagator (B.5).

and

S(p) ≡ 1

p+ − Σ(p−) − m2
q

2p−
+ iε sgn(p−)

. (B.10)

Since by definition Φ(p−, p′; q) does not depend on p+, (B.8) tells us that T (p, p′; q) does

not depend on p+ either. So, the p+ integral in (B.9) converges. For 0 < p−/q− < 1 we get

Φ(p−, p
′; q) =

2πi sgn(q−)T (p−, p′; q)

q+ + Σ(p− − q−) − Σ(p−) +
m2

q

2(p−−q−) −
m2

q

2p−
+ iε sgn(q−)

, (B.11)

while for p−/q− ≥ 1 or p−/q− ≤ 0 we get

Φ(p−, p
′; q) = 0 . (B.12)

Then, for 0 < p−/q− < 1, putting (B.8) into (B.11) gives

m2
q − 1

p̂(1 − p̂)
Φ(p−, p

′; q) − P̂

∫ 1

0

Φ(q−x, p′; q)
(x− p̂)2

dx

= − 4π2

Nc |q−|
1

[(p̂ − p̂′)2]λ̂
+ (q2 + iε)Φ(p−, p

′; q) , (B.13)

where p̂ ≡ p−/q−, p̂′ ≡ p′−/q−, and λ̂ ≡ λ/ |q−|. For 0 < x < 1, this can be solved in terms

of the ’t Hooft wavefunction φn(x) satisfying the ’t Hooft equation (2.2). For x ≤ 0 or ≥ 0,

we set φn(x) = 0 by definition. Then, we have

Φ(p−, p
′
−; q) =

4π2

Nc |q−|
∑

n

1

q2 −m2
n + iε

φn(p̂)

∫ 1

0
dx

φ∗n(x)

[(x− p̂′)2]λ̂
, (B.14)

for all real values of p−.

Therefore, we finally get

T (p−, p
′
−; q) = − iπ

Nc

1[
(p− − p′−)2

]
λ

+
4π

Nc

∑

n

i

q2 −m2
n + iε

ψn(p̂, q−)ψ∗
n(p̂′, q−)

λ2
(B.15)

where

ψn(x, q−) ≡ λ

2|q−|

∫ 1

0
dy

φn(y)

[(y − x)2]λ̂
. (B.16)
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Figure 3: Two-point correlators at the leading order in 1/Nc. The big dots represent the operators

Rk−, Rℓ−.

For 0 < x < 1, the ’t Hooft equation (2.2) tells us that ψn is equal to φn up to an

O(λ) correction:

ψn(x, q−) =

[
1 − λ

2 |q−|

(
m2

n −
m2

q − 1

x(1 − x)

)]
φn(x) = φn(x) +O(λ) . (B.17)

For x < 0 or > 1, we can remove the IR cutoff in the integrand in (B.16), so ψn can be

written as

ψn(x, q−) =
λ

2|q−|

∫ 1

0
dy

φn(y)

(y − x)2
= O(λ) . (B.18)

B.4 Computation of 2-point correlators

In our gauge 〈Rn−Rn−〉 is the easiest one to compute. First, let us define

Rk,ℓ ≡ [(−i∂−)kψ]γ−(i∂−)ℓψ , (B.19)

so that

Rn− =

n−1∑

k=0

(n−1Ck)
2Rn−1−k,k . (B.20)

Then, in terms of T (p−, p′−; q) calculated above, the correlator can be expressed as in

figure 3. The simple quark-loop diagram without a T blob will vanish in the limit of

λ→ 0. The contribution from the one with a T blob is

〈Rj,kRℓ,m〉(q) = −N2
c

∫
d2p

(2π)2

∫
d2p′

(2π)2
S(p− q)S(P )S(p′ − q)S(p′)

× pj
− (p− − q−)k p′m− (p′− − q−)ℓ T (p−, p

′
−; q) .

Performing p+ and p′+ integrals and taking the λ→ 0 limit, we obtain

〈Rj,kRℓ,m〉(q) =
Nc

π

∑

n

iqj+k+ℓ+m+2
−

q2 −m2
n + iε

[∫ 1

0
dxxj(x− 1)k φn(x)

] [∫ 1

0
dy ym(y − 1)ℓ φn(y)

]
.

(B.21)
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Now, notice that

n∑

k=0

(nCk)
2xn−k(x− 1)k = Pn(2x− 1) , (B.22)

where Pn is the Legendre polynomial. Therefore, we obtain

〈Rk−Rℓ−〉(q) (B.23)

=
Nc

π

∑

n

iqk+ℓ
−

q2 −m2
n + iε

[∫ 1

0
dxPk−1(2x− 1)φn(x)

][∫ 1

0
dy Pℓ−1(2y − 1)φn(y)

]

Translating this result to the LL case is trivial. Repeating the above steps for S = ψψ and

P = ψiγ3ψ to obtain (2.5) and (2.6) is also straightforward.

C. Details of the spin-2 calculation

Due to the special role of the z coordinate in the AdS3 metric (3.1) and our choice of

gauge (3.19), it is necessary to treat ‘3’ or ‘z’ indices separately from ‘µ’ indices. For this

purpose, we need to know an explicit expression of the Christoffel symbol for the AdS3

background ĝAB = z−2 ηAB :

Γ̂A
BC = −1

z
(δ3Bδ

A
C + δ3Cδ

A
B − ĝ3AĝBC) . (C.1)

(Note that ĝ3AĝBC is actually independent of z, so the whole Γ̂A
BC goes as 1/z.) Using

this, we get the following ‘rules’ for ∇Ah
C
B :

∇3h
C
B = ∂3h

C
B

∇αh
γ
β = ∂αh

γ
β − 1

z

(
δγ
αh

3
β + ĝαβh

3γ
)

∇αh
3
β = ∂αh

3
β − z

(
hαβ − ĝαβh

3
3

)

∇αh
3
3 = ∂αh

3
3 +

2

z
h3

α (C.2)

To derive (3.25) from (3.23), we just use these formulae with the gauge condition h3M = 0.

Next, in (3.47)-(3.49), all the terms that are not multiplied by c arise from varying SEH

with respect to h3M . It is a little more work to get them because we must keep all terms

linear in h3M until the end of the calculation. But still it is not so laborious because SEH

itself is simple enough.

However, it is much more tedious to derive (3.30) and especially the c-dependent

terms in (3.47)-(3.49), because SCS contains many more terms with more indices, so just

classifying each index into ‘µ’ and ‘3’ will give us a large number of terms. Although this

is just a matter of algebra, we would like to mention a few things that may help the reader

verify those equations.

First, note that, for gAB = ĝAB + hAB, we have ΓA
BC = Γ̂A

BC + δΓA
BC where δΓA

BC

consists of hAB . Then, correspondingly, we have ΩCS = Ω̂CS + δΩCS where we further split

δΩCS into two parts:

δΩCS = Ω
(1)
CS + Ω

(2)
CS , (C.3)
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where, in terms of the matrix notation introduced in section 3.2.2,

Ω
(1)
CS ≡ ǫABC Tr

[
δΓA ∂BΓ̂C + Γ̂A ∂BδΓC + 2Γ̂A Γ̂B δΓC

]
,

(C.4)

and

Ω
(2)
CS ≡ ǫABC Tr

[
δΓA ∂BδΓC + 2Γ̂A δΓB δΓC

]
. (C.5)

In the AdS3 background, Ω
(1)
CS is purely a total derivative. This can be seen by first putting

it in the following form:

δΩ
(1)
CS = −ǫABC ∂ATr

[
Γ̂B δΓC

]
+ ǫABC Tr

[
δΓA R̂BC

]
. (C.6)

Then, note that since AdS3 is maximally symmetric, we have R̂A
BCD = R̂ (δA

C ĝBD −
δA
D ĝBC)/6 where R̂ is the scalar curvature, which in turn implies that the second term in

the above equation vanishes identically. Therefore, in the AdS3 background, we have

Ω
(1)
CS = −ǫABC ∂ATr

[
Γ̂B δΓC

]
. (C.7)

So it comes down to evaluating Ω
(2)
CS. Since it is already quadratic in δΓA

BC , we just

need to express δΓA
BC to first order in hAB :

δΓA
BC =

1

2
(∇Bh

A
C + ∇Ch

A
B −∇AhBC) +O(h2) (C.8)

Then, to get the action (3.30), we apply the rules (C.2) to the above expression of δΓ and

plug that into Ω
(2)
CS, which is not so bad because we can use the gauge condition h3A = 0

from the beginning of the calculation.

What is grueling is to get the c-dependent terms in the constraint equations (3.47)-

(3.49), because we need to keep h3M to linear order until the end of the calculation in order

for us to be able to vary SCS with respect to h3M . Fortunately, in the above expression

(C.5) of Ω
(2)
CS, we have no more than one ∇ acting on hAB , so we can still use the rules (C.2).

This is a lengthy but straightforward calculation. A better way is to first combine the two

terms in (C.5) to get

Ω
(2)
CS ≡ ǫABC Tr

[
δΓA∇BδΓC

]
. (C.9)

This simple appearance is actually deceiving, because now we have two ∇’s acting on hAB ,

so we need extend the rules (C.2) to the case with two covariant derivatives, which will be

many more rules than the one-derivative case. So, we should use the commutation relation

(3.26) to eliminate ∇’s as much as possible. Below we sketch how the calculation proceeds

when one does it this way.

First, using (C.8), we can write (C.9) explicitly in terms of hAB:

Ω
(2)
CS =

1

4
ǫABC(∇Ah

DE)∇B∇ChDE +
1

2
ǫABC(∇EhD

A )∇B(∇DhCE −∇EhCD) . (C.10)
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Then, varying Ω
(2)
CS with respect to hAB gives

δ

δhDE

∫
d3xΩ

(2)
CS

= −1

2

[
1

2
ǫABC∇A∇B∇ChDE + ǫEBC∇A∇B(∇DhA

C −∇AhD
C ) + (D ↔ E)

]
(C.11)

where (D ↔ E) represents the whole expression before it with D and E swapped. Now,

the three ∇’s in the first term above can be immediately reduced to one ∇ using the

commutator (3.26) since they are already anti-symmetrized due to the ǫ tensor. In a

maximally symmetric space such as AdS3, it simplifies down to

ǫABC∇A∇B∇ChDE = −R̂
6

[
ǫDAB∇Ah

E
B + (D ↔ E)

]
. (C.12)

As for ǫEBC∇A∇B∇DhA
C , we can simplify it (in a maximally symmetric space) as

ǫEBC∇A∇B∇DhA
C + (D ↔ E) = ǫEBC

(
∇D∇B∇Ah

A
C +

2R̂

3
∇Bh

D
C

)
+ (D ↔ E) . (C.13)

This is in fact better than the original expression; first, the R̂ term can be combined

with (C.12). Second, note that the ∇B in the first term can be replaced with ∂B . Then,

we write out the ∇D explicitly in terms of ∂ and Γ̂. Now we have only one ∇ left, which

in our h3A = 0 gauge gives

∇Ah
A
C = ∂Ah

A
C +

1

z
δ3Ch . (C.14)

We then obtain

ǫEBC∇D∇B∇Ah
A
C + (D ↔ E)

= ǫDAB ĝEF

[
∂F∂A∂Ch

C
B +

1

z
δ3A∂F∂Ch

C
B +

1

z
δ3B∂F∂Ah+

1

z
δ3B∂A∂Ch

C
F

−2z ĝ3F ∂A∂Ch
C
B − 2ĝ3F δ

3
B∂Ah

]
+ (D ↔ E) . (C.15)

Next, going back to (C.11), we have

ǫEBC∇A∇B∇AhD
C + (D ↔ E) = ǫEBC

(
∇B∇2hD

C +
R̂

6
∇Bh

D
C

)
+ (D ↔ E) . (C.16)

Again, the R̂ term can be combined with (C.12). The three-∇ term is not so bad since

two of them are contracted, and exploiting the anti-symmetry between B and C, we can

simplify it to

ǫEBC∇B∇2hD
C + (D ↔ E) = ǫEBC

(
∂B − 1

z
δ3B

)
∇2hD

C . (C.17)
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This ∇2 term must be computed by brute force, but this is the only one. It becomes

∇2hD
C = ĝAF∂A∂Fh

D
C + z∂3h

D
C +

2

z
δ3C∂Ah

AD − 2zδD
3 ∂Ah

A
C + 2hD

C − 2δD
3 δ

3
Ch . (C.18)

Putting all the pieces together (with R̂ = 6 for AdS3), we obtain

− δ

δhDE

∫
d3xΩ

(2)
CS

=
1

2
ǫDAB

[
2∇Ah

E
B + ĝEF

(
∂F∂A∂Ch

C
B +

1

z
δ3B∂F∂Ah+

1

z
δ3A∂F∂Ch

C
B

)

−ĝCF

(
∂C∂F∂Ah

E
B +

1

z
δ3A∂C∂Fh

E
B

)
− z∂A∂3h

E
B − 1

z
δ3B∂A∂Ch

CE

−2∂Ah
E
B +

2

z
δ3Ah

E
B

]
+ (D ↔ E) . (C.19)
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